Alfieri, J. G., Anderson, M. C., Kustas, W. P., and Cammalleri, C.: Effect of
the revisit interval and temporal upscaling methods on the accuracy of remotely
sensed evapotranspiration estimates, Hydrol. Earth Syst. Sci., 21, 83–98,
https://doi.org/10.5194/hess-21-83-2017, 2017.
Anderson, M. C., Norman, J. M., Diak, G. R., Kustas, W. P., and Mecikalski, J.
R.: A two-source time-integrated model for estimating surface fluxes using
thermal infrared remote sensing, Remote Sens. Environ., 60, 195–216, 1997.
Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. A., and Kustas, W.
P.: A climatological study of evapotranspiration and moisture stress across the
continental United States based on thermal remote sensing: 1. Model formulation,
J. Geophys. Res., 112, D10117, https://doi.org/10.1029/2006JD007506, 2007a.
Anderson, M. C., Kustas, W. P., Norman, J. M., Hain, C. R., Mecikalski, J. R.,
Schultz, L., González-Dugo, M. P., Cammalleri, C., d'Urso, G., Pimstein, A.,
and Gao, F.: Mapping daily evapotranspiration at field to continental scales
using geostationary and polar orbiting satellite imagery, Hydrol. Earth Syst.
Sci., 15, 223–239, https://doi.org/10.5194/hess-15-223-2011, 2011.
Baldocchi, D., Falge, E., Gu, L. H., Olson, R., Hollinger, D., Running, S.,
Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A.,
Katul, G., Law, B., Lee, X. H., Malhi, Y., Meyers, T., Munger, W., Oechel, W.,
Paw U, K., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S.,
Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A new tool to study the temporal
and spatial variability of ecosystem-scale carbon dioxide, water vapor, and
energy flux densities, B. Am. Meteorol. Soc., 82, 2415–2434, 2001.
Baumgartner, A. and Reichel, E.: The world water balance, Elsevier Scientific
Publishing Company, Munich, 1975.
Campbell, G. S. and Norman, J. M.: An Introduction to environmental biophysics,
Springer-Verlag, New York, 1998.
Doelling, D.: CERES Level 3 SYN1DEG-DAYTerra + Aqua netCDF file – Edition 3A,
NASA Langley Atmospheric Science Data Center DAAC, https://doi.org/10.5067/Terra+Aqua/CERES/SYN1degDAY_L3.003A, 2012.
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley,
A. and Huang, X.: MODIS Collection 5 global land cover: Algorithm refinements
and characterization of new datasets, Remote Sens. Environ., 114, 168–182, 2010.
Göttsche, F.-M. and Olesen, F. S.: Modelling of diurnal cycles of brightness
temperature extracted from METEOSAT data, Remote Sens. Environ., 76, 337–348,
https://doi.org/10.1016/S0034-4257(00)00214-5, 2001.
Hain, C. R. and Anderson, M. C.: Estimating Morning Change in Land Surface
Temperature from MODIS Day/Night Land Surface Temperature: Applications for
Surface Energy Balance Modeling, Geophys. Res. Lett., 44, 9723–9733, https://doi.org/10.1002/2017GL074952, 2017.
Hain, C. R., Crow, W. T., Anderson, M. C., and Yilmaz, M. T.: Diagnosing
Neglected Soil Moisture Source–Sink Processes via a Thermal Infrared-Based
Two-Source Energy Balance Model, J. Hydrometeorol., 16, 1070–1086, https://doi.org/10.1175/JHM-D-14-0017.1, 2015.
Holmes, T. R. H., Crow, W. T., Yilmaz, M. T., Jackson, T. J., and Basara, J. B.:
Enhancing model-based land surface temperature estimates using multiplatform
microwave observations, J. Geophys. Res.-Atmos., 118, 577–591, https://doi.org/10.1002/jgrd.50113, 2013a.
Holmes, T. R. H., Crow, W. T., and Hain, C.: Spatial patterns in timing of the
diurnal temperature cycle, Hydrol. Earth Syst. Sci., 17, 3695–3706,
https://doi.org/10.5194/hess-17-3695-2013, 2013b.
Holmes, T. R. H., Crow, W. T., Hain, C. R., Anderson, M., and Kustas, W. P.:
Diurnal temperature cycle as observed by thermal infrared and microwave
radiometers, Remote Sens. Environ., 158, 110–125, https://doi.org/10.1016/j.rse.2014.10.031, 2015.
Holmes, T. R. H., Hain, C. R., Anderson, M. C., and Crow, W. T.: Cloud tolerance
of remote-sensing technologies to measure land surface temperature, Hydrol.
Earth Syst. Sci., 20, 3263–3275, https://doi.org/10.5194/hess-20-3263-2016, 2016.
Kustas, W. P. and Norman, J. M.: Evaluation of soil and vegetation heat flux
predictions using a simple two-source model with radiometric temperatures for
partial canopy cover, Agr. Forest Meteorol., 94, 13–29, 1999.
Mecikalski, J. R., Diak, G. R., Anderson, M. C., and Norman, J. M.: Estimating
fluxes on continental scales using remotely sensed data in an atmospheric–land
exchange model, J. Appl. Meteorol., 38, 1352–1369, 1999.
Myneni, R. B., Hoffman, S., Knyazikhin, Y., Privette, J. L., Glassy, J., Tian,
Y., Wang, Y., Song, X., Zhang, Y., Smith, G. R., Lotsch, A., Friedl, M.,
Morisette, J. T., Votava, P., and Nemani, R. R.: Global products of vegetation
leaf area and fraction absorbed PAR from year one of MODIS data, Remote Sens.
Environ., 83, 214–231, 2002.
Norman, J. M., Kustas, W. P., and Humes, K. S.: Source approach for estimating
soil and vegetation energy fluxes in observations of directional radiometric
surface temperature, Agr. Forest Meteorol., 77, 263–293, https://doi.org/10.1016/0168-1923(95)02265-Y, 1995.
Norouzi, H., Rossow, W., Temimi, M., Prigent, C., Azarderakhsh, M., Boukabara,
S., and Khanbilvardi, R.: Using microwave brightness temperature diurnal cycle
to improve emissivity retrievals over land, Remote Sens. Environ., 123, 470–482, 2012.
Pastorello, G., Agarwal, D., Papale, D., Samak, T., Trotta, C., Ribeca, A.,
Poindexter, C., Faybishenko, B., Gunter, D., Hollowgrass, R., and Canfora, E.:
Observational data patterns for time series data quality assessment, in:
2014 IEEE 10th International Conference on e-Science, vol. 1, Sao Paulo, Brazil, 271–278, 2014.
Priestley, C. H. B. and Taylor, R. J.: On the assessment of surface heat flux
and evaporation using large-scale parameters, Mon. Weather Rev., 100, 81–92, 1972.
Prigent, C., Jimenez, C., and Aires, F.: Toward “all weather”, long record,
and real-time land surface temperature retrievals from microwave satellite
observations, J. Geophys. Res.-Atmos., 121, 5699–5717, https://doi.org/10.1002/2015JD024402, 2016.
Rossow, W. B., Garder, L. C., and Lacis, A. A.: Global, Seasonal Cloud Variations
from Satellite Radiance Measurements. Part I: Sensitivity of Analysis, J. Climate,
2, 419–458, https://doi.org/10.1175/1520-0442(1989)002<0419:GSCVFS>2.0.CO;2, 1989.
Saha, S., Moorthi, S., Pan, H., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler,
R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G.,
Wang, J., Hou, Y., Chuang, H., Juang, H., Sela, J., Iredell, M., Treadon, R.,
Kleist, D., Van Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H.,
Yang, R., Lord, S., van den Dool, H., Kumar, A., Wang, W., Long, C., Chelliah,
M., Xue, Y., Huang, B., Schemm, J.-K., Ebisuzaki, W., Lin, R., Xie, P., Chen,
M., Zhou, S., Higgins, W., Zou, C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L.,
Reynolds, R. W., Rutledge, G., and Goldberg, M: NCEP Climate Forecast System
Reanalysis (CFSR) 6-hourly Products, January 1979 to December 2010, NCAR
Computational and Information Systems Laboratory Research Data Archive,
available at: https://doi.org/10.5065/D69K487J, 2010.
Saha, S., Moorthi, S., Pan, H., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler,
R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G.,
Wang, J., Hou, Y., Chuang, H., Juang, H., Sela, J., Iredell, M., Treadon, R.,
Kleist, D., Van Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H.,
Yang, R., Lord, S., van den Dool, H., Kumar, A., Wang, W., Long, C., Chelliah,
M., Xue, Y., Huang, B., Schemm, J.-K., Ebisuzaki, W., Lin, R., Xie, P., Chen,
M., Zhou, S., Higgins, W., Zou, C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L.,
Reynolds, R. W., Rutledge, G., and Goldberg, M.: NCEP Climate Forecast System
Version 2 (CFSv2) 6-hourly Products, NCAR Computational and Information Systems
Laboratory Research Data Archive, available at: https://doi.org/10.5065/D61C1TXF, 2011.
Schaaf, C. B., Gao, F., Strahler, A. H., Lucht, W., Li, X., Tsang, T., Strugnell,
N. C., Zhang, X., Jin, Y., Muller, J.-P., Lewis, P., Barnsley, M., Hobson, P.,
Disney, M., Roberts, G., Dunderdale, M., Doll, C., d'Entremont, R. P., Hu, B.,
Liang, S., Privette, J. L., and Roy, D.: First operational BRDF, albedo nadir
reflectance products from MODIS, Remote Sens. Environ., 83, 135–148,
https://doi.org/10.1016/S0034-4257(02)00091-3, 2002.
Trambauer, P., Dutra, E., Maskey, S., Werner, M., Pappenberger, F., van Beek,
L. P. H., and Uhlenbrook, S.: Comparison of different evaporation estimates
over the African continent, Hydrol. Earth Syst. Sci., 18, 193–212,
https://doi.org/10.5194/hess-18-193-2014, 2014.
Trenberth, K. E., Fasullo, J. T., and Kiehl, J.: Earth's Global Energy Budget,
B. Am. Meteorol. Soc., 90, 311–323, https://doi.org/10.1175/2008BAMS2634.1, 2009.
Ulaby, F. T., Moore, R. K., and Fung, A. K.: Microwave Remote Sensing: Active
and Passive, in: Vol. III. From theory to applications, Artech House, Norwood, MA, 1986.
Wan, Z.: New refinements and validation of the MODIS land-surface
temperature/emissivity products, Remote Sens. Environ., 112, 59–74,
https://doi.org/10.1016/j.rse.2006.06.026, 2008.