Anquetin, S., Braud, I., Vannier, O., Viallet, P., Boudevillain, B., Creutin,
J.-D., and Manus, C.: Sensitivity of the hydrological response to the
variability of rainfall fields and soils for the Gard 2002 flash-flood
event, J. Hydrol., 394, 134–147, https://doi.org/10.1016/j.jhydrol.2010.07.002, 2010. a
Barbi, A., Monai, M., Racca, R., and Rossa, A. M.: Recurring features of extreme autumnall rainfall events on the Veneto
coastal area, Nat. Hazards Earth Syst. Sci., 12, 2463–2477, https://doi.org/10.5194/nhess-12-2463-2012, 2012. a, b
Beven, K.: Changing ideas in hydrology: the case of physically based model, J.
Hydrol., 105, 157–172, https://doi.org/10.1016/0022-1694(89)90101-7, 1989. a
Beven, K.: A manifesto for the equifinality thesis, J. Hydrol., 320, 18–36,
https://doi.org/10.1016/j.jhydrol.2005.07.007, 2006. a
Crow, W. T. and Van Loon, E.: Impact of Incorrect Model Error Assumptions on
the Sequential Assimilation of Remotely Sensed Surface Soil Moisture, J.
Hydrometeorol., 7, 421–432, https://doi.org/10.1175/JHM499.1, 2006. a, b
Dee, D. P.: Bias and data assimilation, Q. J. Roy. Meteor. Soc., 131,
3323–3343, https://doi.org/10.1256/qj.05.137, 2005. a
de Vos, L., Leijnse, H., Overeem, A., and Uijlenhoet, R.: The potential of urban rainfall monitoring with crowdsourced
automatic weather stations in Amsterdam, Hydrol. Earth Syst. Sci., 21, 765–777, https://doi.org/10.5194/hess-21-765-2017, 2017. a
Ercolani, G. and Castelli, F.: Variational assimilation of streamflow data in
distributed flood forecasting, Water Resour. Res., 53, 158–183,
https://doi.org/10.1002/2016WR019208, 2017. a
Jakeman, A. J. and Hornberger, G. M.: How much complexity is warranted in a
rainfall-runoff model?, Water Resour. Res., 29, 2637–2649,
https://doi.org/10.1029/93WR00877, 1993. a
Le Coz, J., Patalano, A., Collins, D., Guillén, N. F., García, C. M.,
Smart, G. M., Bind, J., Chiaverini, A., Le Boursicaud, R., Dramais, G., and
Braud, I.: Crowdsourced data for flood hydrology: Feedback from recent
citizen science projects in Argentina, France and New Zealand, J. Hydrol.,
541, 766–777, https://doi.org/10.1016/j.jhydrol.2016.07.036, 2016. a
Liu, Y., Weerts, A. H., Clark, M., Hendricks Franssen, H.-J., Kumar, S., Moradkhani, H., Seo, D.-J., Schwanenberg, D., Smith, P.,
van Dijk, A. I. J. M., van Velzen, N., He, M., Lee, H., Noh, S. J., Rakovec, O., and Restrepo, P.: Advancing data assimilation
in operational hydrologic forecasting: progresses, challenges, and emerging opportunities, Hydrol. Earth Syst. Sci., 16, 3863–3887, https://doi.org/10.5194/hess-16-3863-2012, 2012. a
Loague, K., Heppner, C. S., Ebel, B. A., and VanderKwaak, J. E.: The quixotic
search for a comprehensive understanding of hydrologic response at the
surface: Horton, Dunne, Dunton, and the role of concept-development
simulation, Hydrol. Process., 24, 2499–2505, https://doi.org/10.1002/hyp.7834, 2010. a
Mazzoleni, M., Alfonso, L., Chacon-Hurtado, J., and Solomatine, D.:
Assimilating uncertain, dynamic and intermittent streamflow observations in
hydrological models, Adv. Water Resour., 83, 323–339,
https://doi.org/10.1016/j.advwatres.2015.07.004, 2015. a, b
Mazzoleni, M., Alfonso, L., and Solomatine, D.: Influence of spatial
distribution of sensors and observation accuracy on the assimilation of
distributed streamflow data in hydrological modelling, Hydrolog. Sci. J.,
62, 389–407, https://doi.org/10.1080/02626667.2016.1247211, 2017. a
Mazzoleni, M., Verlaan, M., Alfonso, L., Monego, M., Norbiato, D., Ferri, M., and Solomatine, D. P.: Can assimilation
of crowdsourced data in hydrological modelling improve flood prediction?, Hydrol. Earth Syst. Sci., 21, 839–861, https://doi.org/10.5194/hess-21-839-2017, 2017. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r
McCabe, M. F., Rodell, M., Alsdorf, D. E., Miralles, D. G., Uijlenhoet, R., Wagner, W., Lucieer, A., Houborg, R.,
Verhoest, N. E. C., Franz, T. E., Shi, J., Gao, H., and Wood, E. F.: The future of Earth observation in hydrology,
Hydrol. Earth Syst. Sci., 21, 3879–3914, https://doi.org/10.5194/hess-21-3879-2017, 2017. a
Mejia, A. I. and Reed, S. M.: Evaluating the effects of parameterized cross
section shapes and simplified routing with a coupled distributed hydrologic
and hydraulic model, J. Hydrol., 409, 512–524,
https://doi.org/10.1016/j.jhydrol.2011.08.050, 2011. a
Moradkhani, H., Sorooshian, S., Gupta, H. V., and Houser, P. R.: Dual
state-parameter estimation of hydrological models using Ensemble Kalman
Filter, Adv. Water Resour., 28, 135–147,
https://doi.org/10.1016/j.advwatres.2004.09.002, 2005. a
Refsgaard, J. C.: Parametrisation, calibration and validation of distributed
hydrological models, J. Hydrol., 198, 69–97,
https://doi.org/10.1016/S0022-1694(96)03329-X, 1997. a, b
Rodríguez-Iturbe, I. and Rinaldo, A.: Fractal river basins: Chance and
self-organization, Cambridge University Press, Cambridge, UK, 2001. a
Rysman, J.-F., Lemaître, Y., and Moreau, E.: Spatial and temporal variability
of rainfall in the Alps-Mediterranean Euroregion, J. Appl. Meteorol.
Clim., 55, 655–671, https://doi.org/10.1175/JAMC-D-15-0095.1, 2016. a
Salamon, P. and Feyen, L.: Assessing parameter, precipitation, and predictive
uncertainty in a distributed hydrological model using sequential data
assimilation with the particle filter, J. Hydrol., 376, 428–442,
https://doi.org/10.1016/j.jhydrol.2009.07.051, 2009. a
Scorzini, A. R. and Frank, E.: Flood damage curves: new insights from the 2010
flood in Veneto, Italy, J. Flood Risk Manage., 10, 381–392,
https://doi.org/10.1111/jfr3.12163, 2017. a
Sebben, M. L., Werner, A. D., Liggett, J. E., Partington, D., and Simmons,
C. T.: On the testing of fully integrated surface-subsurface hydrological
models, Hydrol. Process., 27, 1276–1285, https://doi.org/10.1002/hyp.9630, 2012. a
Smith, L., Liang, Q., James, P., and Lin, W.: Assessing the utility of social
media as a data source for flood risk management using a real-time modelling
framework, J. Flood Risk Manage., 10, 370–380, https://doi.org/10.1111/jfr3.12154,
2017. a
Smith, R.: The influence of mountains on the atmosphere, Adv. Geophys., 21,
87–230, https://doi.org/10.1016/S0065-2687(08)60262-9, 1979. a
Starkey, E., Parkin, G., Birkinshaw, S., Large, A., Quinn, P., and Gibson, C.:
Demonstrating the value of community-based (“citizen science”)
observations for catchment modelling and characterisation, J. Hydrol., 548,
801–817, https://doi.org/10.1016/j.jhydrol.2017.03.019, 2017.
a
Todini, E.: A mass conservative and water storage consistent variable parameter Muskingum-Cunge approach,
Hydrol. Earth Syst. Sci., 11, 1645–1659, https://doi.org/10.5194/hess-11-1645-2007, 2007. a
van Meerveld, H. J. I., Vis, M. J. P., and Seibert, J.: Information content of stream level class data for hydrological model
calibration, Hydrol. Earth Syst. Sci., 21, 4895–4905, https://doi.org/10.5194/hess-21-4895-2017, 2017. a
Viero, D. P. and Valipour, M.: Modeling anisotropy in free-surface overland and
shallow inundation flows, Adv. Water Resour., 104, 1–14,
https://doi.org/10.1016/j.advwatres.2017.03.007, 2017. a
Viero, D. P., D'Alpaos, A., Carniello, L., and Defina, A.: Mathematical
modeling of flooding due to river bank failure, Adv. Water Resour., 59,
82–94, https://doi.org/10.1016/j.advwatres.2013.05.011, 2013. a, b
Viero, D. P., Peruzzo, P., Carniello, L., and Defina, A.: Integrated
mathematical modeling of hydrological and hydrodynamic response to rainfall
events in rural lowland catchments, Water Resour. Res., 50, 5941–5957,
https://doi.org/10.1002/2013WR014293, 2014. a
Walker, D., Forsythe, N., Parkin, G., and Gowing, J.: Filling the observational
void: Scientific value and quantitative validation of hydrometeorological
data from a community-based monitoring programme, J. Hydrol., 538, 713–725,
https://doi.org/10.1016/j.jhydrol.2016.04.062, 2016. a
Wani, O., Scheidegger, A., Carbajal, J. P., Rieckermann, J., and Blumensaat,
F.: Parameter estimation of hydrologic models using a likelihood function for
censored and binary observations, Water Res., 121, 290–301,
https://doi.org/10.1016/j.watres.2017.05.038, 2017. a
Yang, Y.-Y. and Kang, S.-C.: Crowd-based velocimetry for surface flows, Adv.
Eng. Inform., 32, 275–286, https://doi.org/10.1016/j.aei.2017.03.007, 2017. a