Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 22, issue 3
Hydrol. Earth Syst. Sci., 22, 1775–1791, 2018
https://doi.org/10.5194/hess-22-1775-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Hydrol. Earth Syst. Sci., 22, 1775–1791, 2018
https://doi.org/10.5194/hess-22-1775-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 12 Mar 2018

Research article | 12 Mar 2018

Mapping (dis)agreement in hydrologic projections

Lieke A. Melsen et al.
Data sets

large sample watershed-scale hydrometeorological dataset for the contiguous USA A. Newman, K. Sampson, K., M. Clark, A. Bock, R. Viger, and D. Blodgett https://doi.org/10.5065/D6MW2F4D

The CAMELS data set: catchment attributes and meteorology for large-sample studies. version 1.0 N. Addor, A. Newman, N. Mizukami, and M. Clark https://doi.org/10.5065/D6G73C3Q

The CAMELS data set: catchment attributes and meteorology for large-sample studies N. Addor, A. J. Newman,N. Mizukami, N., and M. P. Clark https://doi.org/10.5194/hess-21-5293-2017

Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: data set characteristics and assessment of regional variability in hydrologic model performance A. Newman, M. Clark, K. Sampson, A. Wood, L. Hay, A. Bock, A., R. Viger, D. Blodgett, L. Brekke, J. Arnold, T. Hopson, and Q. Duan https://doi.org/10.5194/hess-19-209-2015

Publications Copernicus
Download
Short summary
Long-term hydrological predictions are important for water management planning, but are also prone to uncertainty. This study investigates three sources of uncertainty for long-term hydrological predictions in the US: climate models, hydrological models, and hydrological model parameters. Mapping the results revealed spatial patterns in the three sources of uncertainty: different sources of uncertainty dominate in different regions.
Long-term hydrological predictions are important for water management planning, but are also...
Citation