Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year 4.819
  • CiteScore value: 4.10 CiteScore 4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H index value: 99 Scimago H index 99
Volume 22, issue 1 | Copyright
Hydrol. Earth Syst. Sci., 22, 179-201, 2018
https://doi.org/10.5194/hess-22-179-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 10 Jan 2018

Research article | 10 Jan 2018

Modelling hydrologic impacts of light absorbing aerosol deposition on snow at the catchment scale

Felix N. Matt et al.
Related authors
Parameter uncertainty analysis for an operational hydrological model using residual based and limits of acceptability approaches
Aynom T. Tweldebrahn, John F. Burkhart, and Thomas V. Schuler
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-158,https://doi.org/10.5194/hess-2018-158, 2018
Revised manuscript accepted for HESS
The regional climate model REMO (v2015) coupled with the 1-D freshwater lake model FLake (v1): Fenno-Scandinavian climate and lakes
Joni-Pekka Pietikäinen, Tiina Markkanen, Kevin Sieck, Daniela Jacob, Johanna Korhonen, Petri Räisänen, Yao Gao, Jaakko Ahola, Hannele Korhonen, Ari Laaksonen, and Jussi Kaurola
Geosci. Model Dev., 11, 1321-1342, https://doi.org/10.5194/gmd-11-1321-2018,https://doi.org/10.5194/gmd-11-1321-2018, 2018
Unmanned aerial system nadir reflectance and MODIS nadir BRDF-adjusted surface reflectances intercompared over Greenland
John Faulkner Burkhart, Arve Kylling, Crystal B. Schaaf, Zhuosen Wang, Wiley Bogren, Rune Storvold, Stian Solbø, Christina A. Pedersen, and Sebastian Gerland
The Cryosphere, 11, 1575-1589, https://doi.org/10.5194/tc-11-1575-2017,https://doi.org/10.5194/tc-11-1575-2017, 2017
Monthly and spatially resolved black carbon emission inventory of India: uncertainty analysis
Umed Paliwal, Mukesh Sharma, and John F. Burkhart
Atmos. Chem. Phys., 16, 12457-12476, https://doi.org/10.5194/acp-16-12457-2016,https://doi.org/10.5194/acp-16-12457-2016, 2016
Tilt error in cryospheric surface radiation measurements at high latitudes: a model study
Wiley Steven Bogren, John Faulkner Burkhart, and Arve Kylling
The Cryosphere, 10, 613-622, https://doi.org/10.5194/tc-10-613-2016,https://doi.org/10.5194/tc-10-613-2016, 2016
Related subject area
Subject: Snow and Ice | Techniques and Approaches: Modelling approaches
A simple temperature-based method to estimate heterogeneous frozen ground within a distributed watershed model
Michael L. Follum, Jeffrey D. Niemann, Julie T. Parno, and Charles W. Downer
Hydrol. Earth Syst. Sci., 22, 2669-2688, https://doi.org/10.5194/hess-22-2669-2018,https://doi.org/10.5194/hess-22-2669-2018, 2018
Technical note: Representing glacier geometry changes in a semi-distributed hydrological model
Jan Seibert, Marc J. P. Vis, Irene Kohn, Markus Weiler, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 22, 2211-2224, https://doi.org/10.5194/hess-22-2211-2018,https://doi.org/10.5194/hess-22-2211-2018, 2018
Projected cryospheric and hydrological impacts of 21st century climate change in the Ötztal Alps (Austria) simulated using a physically based approach
Florian Hanzer, Kristian Förster, Johanna Nemec, and Ulrich Strasser
Hydrol. Earth Syst. Sci., 22, 1593-1614, https://doi.org/10.5194/hess-22-1593-2018,https://doi.org/10.5194/hess-22-1593-2018, 2018
Scenario approach for the seasonal forecast of Kharif flows from the Upper Indus Basin
Muhammad Fraz Ismail and Wolfgang Bogacki
Hydrol. Earth Syst. Sci., 22, 1391-1409, https://doi.org/10.5194/hess-22-1391-2018,https://doi.org/10.5194/hess-22-1391-2018, 2018
The role of glacier changes and threshold definition in the characterisation of future streamflow droughts in glacierised catchments
Marit Van Tiel, Adriaan J. Teuling, Niko Wanders, Marc J. P. Vis, Kerstin Stahl, and Anne F. Van Loon
Hydrol. Earth Syst. Sci., 22, 463-485, https://doi.org/10.5194/hess-22-463-2018,https://doi.org/10.5194/hess-22-463-2018, 2018
Cited articles
Aamaas, B., Bøggild, C. E., Stordal, F., Berntsen, T., Holmen, K., and Ström, J.: Elemental carbon deposition to Svalbard snow from Norwegian settlements and long-range transport, Tellus B, 63, 340–351, https://doi.org/10.1111/j.1600-0889.2011.00531.x, 2011.
Aas, K. S., Gisnås, K., Westermann, S., and Berntsen, T. K.: A Tiling Approach to Represent Subgrid Snow Variability in Coupled Land Surface–Atmosphere Models, J. Hydrometeorol., 18, 49–63, https://doi.org/10.1175/JHM-D-16-0026.1, 2017.
AMAP: AMAP Assessment 2015: Black carbon and ozone as Arctic climate forcers, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 2015.
Anderson, E. A.: A Point Energy and Mass Balance Model of a Snow Cover, NOAA Technical Report NWS, National Weather Service, Office of Hydrology, Silver Spring, Md, USA, available at: https://searchworks.stanford.edu/view/2518510 (last access: 5 April 2016), 19, 1976.
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005.
Publications Copernicus
Download
Short summary
Certain particles that have the ability to absorb sunlight deposit onto mountain snow via atmospheric transport mechanisms and then lower the snow's ability to reflect sunlight, which increases snowmelt. Herein we present a model aiming to simulate this effect and model the impacts on the streamflow of a southern Norwegian river. We find a significant difference in streamflow between simulations with and without the effect of light absorbing particles applied, in particular during spring melt.
Certain particles that have the ability to absorb sunlight deposit onto mountain snow via...
Citation
Share