Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Hydrol. Earth Syst. Sci., 22, 1811-1829, 2018
https://doi.org/10.5194/hess-22-1811-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
13 Mar 2018
On the use of the GRACE normal equation of inter-satellite tracking data for estimation of soil moisture and groundwater in Australia
Natthachet Tangdamrongsub1, Shin-Chan Han1, Mark Decker2, In-Young Yeo1, and Hyungjun Kim3 1School of Engineering, University of Newcastle, Callaghan, New South Wales, Australia
2ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, New South Wales, Australia
3Institute of Industrial Science, the University of Tokyo, Tokyo, Japan
Abstract. An accurate estimation of soil moisture and groundwater is essential for monitoring the availability of water supply in domestic and agricultural sectors. In order to improve the water storage estimates, previous studies assimilated terrestrial water storage variation (ΔTWS) derived from the Gravity Recovery and Climate Experiment (GRACE) into land surface models (LSMs). However, the GRACE-derived ΔTWS was generally computed from the high-level products (e.g. time-variable gravity fields, i.e. level 2, and land grid from the level 3 product). The gridded data products are subjected to several drawbacks such as signal attenuation and/or distortion caused by a posteriori filters and a lack of error covariance information. The post-processing of GRACE data might lead to the undesired alteration of the signal and its statistical property. This study uses the GRACE least-squares normal equation data to exploit the GRACE information rigorously and negate these limitations. Our approach combines GRACE's least-squares normal equation (obtained from ITSG-Grace2016 product) with the results from the Community Atmosphere Biosphere Land Exchange (CABLE) model to improve soil moisture and groundwater estimates. This study demonstrates, for the first time, an importance of using the GRACE raw data. The GRACE-combined (GC) approach is developed for optimal least-squares combination and the approach is applied to estimate the soil moisture and groundwater over 10 Australian river basins. The results are validated against the satellite soil moisture observation and the in situ groundwater data. Comparing to CABLE, we demonstrate the GC approach delivers evident improvement of water storage estimates, consistently from all basins, yielding better agreement on seasonal and inter-annual timescales. Significant improvement is found in groundwater storage while marginal improvement is observed in surface soil moisture estimates.
Citation: Tangdamrongsub, N., Han, S.-C., Decker, M., Yeo, I.-Y., and Kim, H.: On the use of the GRACE normal equation of inter-satellite tracking data for estimation of soil moisture and groundwater in Australia, Hydrol. Earth Syst. Sci., 22, 1811-1829, https://doi.org/10.5194/hess-22-1811-2018, 2018.
Publications Copernicus
Download
Short summary
We present a new approach to improve the water storage estimate. Our approach combines GRACE's raw data (least-squares normal equation) with the results from the Community Atmosphere Land Exchange (CABLE) model. No post-processing filter is applied to GRACE data, and the full GRACE signal and error information are exploited. The approach is applied over 10 Australian river basins, and the evident improvement of the water storage estimate, particularly groundwater component, is clearly observed.
We present a new approach to improve the water storage estimate. Our approach combines GRACE's...
Share