Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
HESS | Articles | Volume 22, issue 3
Hydrol. Earth Syst. Sci., 22, 1917–1929, 2018
https://doi.org/10.5194/hess-22-1917-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Hydrol. Earth Syst. Sci., 22, 1917–1929, 2018
https://doi.org/10.5194/hess-22-1917-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 20 Mar 2018

Research article | 20 Mar 2018

Active heat pulse sensing of 3-D-flow fields in streambeds

Eddie W. Banks et al.

Related authors

Identifying recharge under subtle ephemeral features in flat-lying semi-arid region using a combined geophysical approach
Brady A. Flinchum, Eddie Banks, Michael Hatch, Okke Batelaan, Luk Peeters, and Sylvain Pasquet
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-576,https://doi.org/10.5194/hess-2019-576, 2020
Revised manuscript under review for HESS
Error in hydraulic head and gradient time-series measurements: a quantitative appraisal
Gabriel C. Rau, Vincent E. A. Post, Margaret Shanafield, Torsten Krekeler, Eddie W. Banks, and Philipp Blum
Hydrol. Earth Syst. Sci., 23, 3603–3629, https://doi.org/10.5194/hess-23-3603-2019,https://doi.org/10.5194/hess-23-3603-2019, 2019
Short summary
Using hydraulic head, chloride and electrical conductivity data to distinguish between mountain-front and mountain-block recharge to basin aquifers
Etienne Bresciani, Roger H. Cranswick, Eddie W. Banks, Jordi Batlle-Aguilar, Peter G. Cook, and Okke Batelaan
Hydrol. Earth Syst. Sci., 22, 1629–1648, https://doi.org/10.5194/hess-22-1629-2018,https://doi.org/10.5194/hess-22-1629-2018, 2018
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Instruments and observation techniques
Long-term changes in central European river discharge for 1869–2016: impact of changing snow covers, reservoir constructions and an intensified hydrological cycle
Erwin Rottler, Till Francke, Gerd Bürger, and Axel Bronstert
Hydrol. Earth Syst. Sci., 24, 1721–1740, https://doi.org/10.5194/hess-24-1721-2020,https://doi.org/10.5194/hess-24-1721-2020, 2020
Short summary
Evolution and dynamics of the vertical temperature profile in an oligotrophic lake
Zvjezdana B. Klaić, Karmen Babić, and Mirko Orlić
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-559,https://doi.org/10.5194/hess-2019-559, 2020
Revised manuscript accepted for HESS
Short summary
Reliable reference for the methane concentrations in Lake Kivu at the beginning of industrial exploitation
Bertram Boehrer, Wolf von Tümpling, Ange Mugisha, Christophe Rogemont, and Augusta Umutoni
Hydrol. Earth Syst. Sci., 23, 4707–4716, https://doi.org/10.5194/hess-23-4707-2019,https://doi.org/10.5194/hess-23-4707-2019, 2019
Short summary
Small dams alter thermal regimes of downstream water
André Chandesris, Kris Van Looy, Jacob S. Diamond, and Yves Souchon
Hydrol. Earth Syst. Sci., 23, 4509–4525, https://doi.org/10.5194/hess-23-4509-2019,https://doi.org/10.5194/hess-23-4509-2019, 2019
Short summary
Greenhouse gas flux studies: An automated online system for gas emission measurements in aquatic environments
Nguyen Thanh Duc, Samuel Silverstein, Martin Wik, Patrick Crill, David Bastviken, and Ruth K. Varner
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-83,https://doi.org/10.5194/hess-2019-83, 2019
Revised manuscript accepted for HESS
Short summary

Cited articles

Abu-Hamdeh, N. H.: Thermal properties of soils as affected by density and water content, Biosyst. Eng., 86, 97–102, https://doi.org/10.1016/S1537-5110(03)00112-0, 2003. 
Anderson, M. P.: Heat as a ground water tracer, Ground Water, 43, 951–968, 2005. 
Angermann, L., Krause, S., and Lewandowski, J.: Application of heat pulse injections for investigating shallow hyporheic flow in a lowland river, Water Resour. Res., 48, W00P02, https://doi.org/10.1029/2012WR012564, 2012a. 
Angermann, L., Lewandowski, J., Fleckenstein, J. H., and Nützmann, G.: A 3D analysis algorithm to improve interpretation of heat pulse sensor results for the determination of small-scale flow directions and velocities in the hyporheic zone, J. Hydrol., 475, 1–11, https://doi.org/10.1016/j.jhydrol.2012.06.050, 2012b. 
Bakker, M., Caljé, R., Schaars, F., van der Made, K.-J., and de Haas, S.: An active heat tracer experiment to determine groundwater velocities using fiber optic cables installed with direct push equipment, Water Resour. Res., 51, 2760–2772, https://doi.org/10.1002/2014WR016632, 2015. 
Publications Copernicus
Download
Short summary
This study used a portable 56-sensor, 3-D temperature array with three heat pulse sources to measure the flow direction and magnitude below the water–sediment interface. Breakthrough curves from each of the sensors were analyzed using a heat transport equation. The use of short-duration heat pulses provided a rapid, accurate assessment technique for determining dynamic and multi-directional flow patterns in the hyporheic zone and is a basis for improved understanding of biogeochemical processes.
This study used a portable 56-sensor, 3-D temperature array with three heat pulse sources to...
Citation