Articles | Volume 22, issue 3
https://doi.org/10.5194/hess-22-1971-2018
https://doi.org/10.5194/hess-22-1971-2018
Research article
 | 
27 Mar 2018
Research article |  | 27 Mar 2018

Responses of runoff to historical and future climate variability over China

Chuanhao Wu, Bill X. Hu, Guoru Huang, Peng Wang, and Kai Xu

Related authors

Hierarchical Sensitivity Analysis for Large Scale Process-based Hydrological Modeling with Application in an Amazonian Watershed
Haifan Liu, Heng Dai, Jie Niu, Bill X. Hu, Han Qiu, Dongwei Gui, Ming Ye, Xingyuan Chen, Chuanhao Wu, Jin Zhang, and William Riley
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-246,https://doi.org/10.5194/hess-2019-246, 2019
Manuscript not accepted for further review
Modeling water balance using the Budyko framework over variable timescales under diverse climates
Chuanhao Wu, Pat J.-F. Yeh, Kai Xu, Bill X. Hu, Guoru Huang, and Peng Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-441,https://doi.org/10.5194/hess-2017-441, 2017
Manuscript not accepted for further review

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Mathematical applications
Inferring heavy tails of flood distributions through hydrograph recession analysis
Hsing-Jui Wang, Ralf Merz, Soohyun Yang, and Stefano Basso
Hydrol. Earth Syst. Sci., 27, 4369–4384, https://doi.org/10.5194/hess-27-4369-2023,https://doi.org/10.5194/hess-27-4369-2023, 2023
Short summary
Landscape structures regulate the contrasting response of recession along rainfall amounts
Jun-Yi Lee, Ci-Jian Yang, Tsung-Ren Peng, Tsung-Yu Lee, and Jr-Chuan Huang
Hydrol. Earth Syst. Sci., 27, 4279–4294, https://doi.org/10.5194/hess-27-4279-2023,https://doi.org/10.5194/hess-27-4279-2023, 2023
Short summary
Hydrological objective functions and ensemble averaging with the Wasserstein distance
Jared C. Magyar and Malcolm Sambridge
Hydrol. Earth Syst. Sci., 27, 991–1010, https://doi.org/10.5194/hess-27-991-2023,https://doi.org/10.5194/hess-27-991-2023, 2023
Short summary
Spatial variability in Alpine reservoir regulation: deriving reservoir operations from streamflow using generalized additive models
Manuela Irene Brunner and Philippe Naveau
Hydrol. Earth Syst. Sci., 27, 673–687, https://doi.org/10.5194/hess-27-673-2023,https://doi.org/10.5194/hess-27-673-2023, 2023
Short summary
Regional significance of historical trends and step changes in Australian streamflow
Gnanathikkam Emmanuel Amirthanathan, Mohammed Abdul Bari, Fitsum Markos Woldemeskel, Narendra Kumar Tuteja, and Paul Martinus Feikema
Hydrol. Earth Syst. Sci., 27, 229–254, https://doi.org/10.5194/hess-27-229-2023,https://doi.org/10.5194/hess-27-229-2023, 2023
Short summary

Cited articles

Adam, J. C., Clark, E. A., Lettenmaier, D. P., and Wood, E. F.: Correction of global precipitation products for orographic effects, J. Climate., 19, 15–38, 2006. 
Allen, R., Pereira, L., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements, FAO, Rome, 1998. 
Chen, H., Guo, S. L., Xu, C. Y., and Singh, V. P.: Historical temporal trends of hydro-climatic variables and runoff response to climate variability and their relevance in water resource management in the Hanjiang basin, J. Hydrol., 344, 171–184, https://doi.org/10.1016/j.jhydrol.2007.06.034, 2007. 
Chen, H., Xiang, T. T., Zhou, X., and Xu, C. Y.: Impacts of climate change on the Qingjiang watershed's runoff change trend in China, Stoch. Environ. Res. Risk A., 26, 847–858, https://doi.org/10.1007/s00477-011-0524-2, 2012. 
Chen, J., Brissette, F. P., Poulin, A., and Leconte, R.: Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed, Water Resour. Res., 47, W12509, https://doi.org/10.1029/2011WR010602, 2011. 
Download
Short summary
China has suffered some of the effects of global warming, and one of the potential implications of climate warming is the alteration of the temporal–spatial patterns of water resources. In this paper, the Budyko-based elasticity method was used to investigate the responses of runoff to historical and future climate variability over China at both grid and catchment scales. The results help to better understand the hydrological effects of climate change and adapt to a changing environment.