Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 22, issue 1
Hydrol. Earth Syst. Sci., 22, 203–220, 2018
https://doi.org/10.5194/hess-22-203-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Hydrol. Earth Syst. Sci., 22, 203–220, 2018
https://doi.org/10.5194/hess-22-203-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 11 Jan 2018

Research article | 11 Jan 2018

Regional analysis of parameter sensitivity for simulation of streamflow and hydrological fingerprints

Simon Höllering et al.

Related authors

An integrated multi-fingerprint sensitivity-nested approach for regional model parameter estimation and catchment similarity assessment
Simon Höllering, Jürgen Ihringer, Luis Samaniego, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-249,https://doi.org/10.5194/hess-2016-249, 2016
Preprint withdrawn

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
On the configuration and initialization of a large-scale hydrological land surface model to represent permafrost
Mohamed E. Elshamy, Daniel Princz, Gonzalo Sapriza-Azuri, Mohamed S. Abdelhamed, Al Pietroniro, Howard S. Wheater, and Saman Razavi
Hydrol. Earth Syst. Sci., 24, 349–379, https://doi.org/10.5194/hess-24-349-2020,https://doi.org/10.5194/hess-24-349-2020, 2020
Short summary
On the representation of water reservoir storage and operations in large-scale hydrological models: implications on model parameterization and climate change impact assessments
Thanh Duc Dang, A. F. M. Kamal Chowdhury, and Stefano Galelli
Hydrol. Earth Syst. Sci., 24, 397–416, https://doi.org/10.5194/hess-24-397-2020,https://doi.org/10.5194/hess-24-397-2020, 2020
Short summary
A global Budyko model to partition evaporation into interception and transpiration
Ameneh Mianabadi, Miriam Coenders-Gerrits, Pooya Shirazi, Bijan Ghahraman, and Amin Alizadeh
Hydrol. Earth Syst. Sci., 23, 4983–5000, https://doi.org/10.5194/hess-23-4983-2019,https://doi.org/10.5194/hess-23-4983-2019, 2019
Short summary
Are the effects of vegetation and soil changes as important as climate change impacts on hydrological processes?
Kabir Rasouli, John W. Pomeroy, and Paul H. Whitfield
Hydrol. Earth Syst. Sci., 23, 4933–4954, https://doi.org/10.5194/hess-23-4933-2019,https://doi.org/10.5194/hess-23-4933-2019, 2019
Short summary
Expansion and contraction of the flowing stream network alter hillslope flowpath lengths and the shape of the travel time distribution
H. J. Ilja van Meerveld, James W. Kirchner, Marc J. P. Vis, Rick S. Assendelft, and Jan Seibert
Hydrol. Earth Syst. Sci., 23, 4825–4834, https://doi.org/10.5194/hess-23-4825-2019,https://doi.org/10.5194/hess-23-4825-2019, 2019
Short summary

Cited articles

Atkinson, S. E., Sivapalan, M., Woods, R. A., and Viney, N. R.: Dominant physical controls on hourly flow predictions and the role of spatial variability: Mahurangi catchment, New Zealand, Adv. Water Res., 26, 219–235, https://doi.org/10.1016/S0309-1708(02)00183-5, 2003.
Beven, K.: Prophecy, reality and uncertainty in distributed hydrological modelling, Adv. Water Res., 16, 41–51, https://doi.org/10.1016/0309-1708(93)90028-E, 1993.
Beven, K.: How far can we go in distributed hydrological modelling?, Hydrol. Earth Syst. Sci., 5, 1–12, https://doi.org/10.5194/hess-5-1-2001, 2001.
Black, P.: Watershed functions, J. Am. Water Resour. Assoc., 33, 1–11, 1997.
Blöschl, G. and Sivapalan, M.: Scale issues in hydrological modelling: A review, Hydrol. Process., 9, 251–290, https://doi.org/10.1002/hyp.3360090305, 1995.
Publications Copernicus
Download
Short summary
Hydrological fingerprints are introduced as response targets for sensitivity analysis and combined with a conventional approach using streamflow data for a temporally resolved sensitivity analysis. The joint benefit of both approaches is presented for several headwater catchments. The approach allows discerning a clarified pattern for parameter influences pinpointed to diverse response characteristics and detecting even slight regional differences.
Hydrological fingerprints are introduced as response targets for sensitivity analysis and...
Citation