Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year 4.819
  • CiteScore value: 4.10 CiteScore 4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H index value: 99 Scimago H index 99
Volume 22, issue 4 | Copyright
Hydrol. Earth Syst. Sci., 22, 2377-2389, 2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 20 Apr 2018

Research article | 20 Apr 2018

Analytical flow duration curves for summer streamflow in Switzerland

Ana Clara Santos1,2, Maria Manuela Portela2, Andrea Rinaldo1,4, and Bettina Schaefli1,3 Ana Clara Santos et al.
  • 1School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
  • 2Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal
  • 3Faculty of Geosciences and Environment, University of Lausanne, Lausanne, Switzerland
  • 4Dipartimento di Ingegneria Civile Edile e Ambientale, Universitá degli studi di Padova, Padua, Italy

Abstract. This paper proposes a systematic assessment of the performance of an analytical modeling framework for streamflow probability distributions for a set of 25 Swiss catchments. These catchments show a wide range of hydroclimatic regimes, including namely snow-influenced streamflows. The model parameters are calculated from a spatially averaged gridded daily precipitation data set and from observed daily discharge time series, both in a forward estimation mode (direct parameter calculation from observed data) and in an inverse estimation mode (maximum likelihood estimation). The performance of the linear and the nonlinear model versions is assessed in terms of reproducing observed flow duration curves and their natural variability. Overall, the nonlinear model version outperforms the linear model for all regimes, but the linear model shows a notable performance increase with catchment elevation. More importantly, the obtained results demonstrate that the analytical model performs well for summer discharge for all analyzed streamflow regimes, ranging from rainfall-driven regimes with summer low flow to snow and glacier regimes with summer high flow. These results suggest that the model's encoding of discharge-generating events based on stochastic soil moisture dynamics is more flexible than previously thought. As shown in this paper, the presence of snowmelt or ice melt is accommodated by a relative increase in the discharge-generating frequency, a key parameter of the model. Explicit quantification of this frequency increase as a function of mean catchment meteorological conditions is left for future research.

Download & links
Publications Copernicus
Short summary
This paper assesses the performance of an analytical modeling framework for probability distributions for summer streamflow of 25 Swiss catchments that present a wide range of hydroclimatic regimes, including snow- and icemelt-influenced streamflows. Two versions of the model were tested: linear and nonlinear. The results show that the model performs well for summer discharges under all analyzed regimes and that model performance varies with mean catchment elevation.
This paper assesses the performance of an analytical modeling framework for probability...