Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
HESS | Articles | Volume 22, issue 4
Hydrol. Earth Syst. Sci., 22, 2449–2470, 2018
https://doi.org/10.5194/hess-22-2449-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Hydrol. Earth Syst. Sci., 22, 2449–2470, 2018
https://doi.org/10.5194/hess-22-2449-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 23 Apr 2018

Research article | 23 Apr 2018

Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions

Gaochao Cai et al.
Data sets

TERENO Data Discovery Portal - Eifel/Lower Rhine Valley Observatory M. Schmidt http://teodoor.icg.kfa-juelich.de/ibg3searchportal2/index.jsp

Publications Copernicus
Download
Short summary
Different crop growths had consequences for the parameterization of root water uptake models. The root hydraulic parameters of the Couvreur model but not the water stress parameters of the Feddes–Jarvis model could be constrained by the field data measured from rhizotron facilities. The simulated differences in transpiration from the two soils and the different water treatments could be confirmed by sap flow measurements. The Couvreur model predicted the ratios of transpiration fluxes better.
Different crop growths had consequences for the parameterization of root water uptake models....
Citation