Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year 4.819
  • CiteScore value: 4.10 CiteScore 4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H index value: 99 Scimago H index 99
Volume 22, issue 5 | Copyright
Hydrol. Earth Syst. Sci., 22, 2795-2809, 2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 08 May 2018

Research article | 08 May 2018

How downstream sub-basins depend on upstream inflows to avoid scarcity: typology and global analysis of transboundary rivers

Hafsa Ahmed Munia1, Joseph H. A. Guillaume1, Naho Mirumachi2, Yoshihide Wada3, and Matti Kummu1 Hafsa Ahmed Munia et al.
  • 1Water and Development Research Group, Aalto University, Tietotie 1E, 02150 Espoo, Finland
  • 2Department of Geography, King's College London, Strand, London, WC2R 2LS, UK
  • 3International Institute for Applied Systems Analysis, Schlossplatz 1, 2361, Laxenburg, Austria

Abstract. Countries sharing river basins are often dependent upon water originating outside their boundaries; meaning that without that upstream water, water scarcity may occur with flow-on implications for water use and management. We develop a formalisation of this concept drawing on ideas about the transition between regimes from resilience literature, using water stress and water shortage as indicators of water scarcity. In our analytical framework, dependency occurs if water from upstream is needed to avoid scarcity. This can be diagnosed by comparing different types of water availability on which a sub-basin relies, in particular local runoff and upstream inflows. At the same time, possible upstream water withdrawals reduce available water downstream, influencing the latter water availability. By developing a framework of scarcity and dependency, we contribute to the understanding of transitions between system regimes. We apply our analytical framework to global transboundary river basins at the scale of sub-basin areas (SBAs). Our results show that 1175 million people live under water stress (42% of the total transboundary population). Surprisingly, the majority (1150 million) of these currently suffer from stress only due to their own excessive water use and possible water from upstream does not have impact on the stress status – i.e. they are not yet dependent on upstream water to avoid stress – but could still impact on the intensity of the stress. At the same time, 386 million people (14%) live in SBAs that can avoid stress owing to available water from upstream and have thus upstream dependency. In the case of water shortage, 306 million people (11%) live in SBAs dependent on upstream water to avoid possible shortage. The identification of transitions between system regimes sheds light on how SBAs may be affected in the future, potentially contributing to further refined analysis of inter- and intrabasin hydro-political power relations and strategic planning of management practices in transboundary basins.

Download & links
Publications Copernicus
Short summary
An analytical framework is developed drawing on ideas of regime shifts from resilience literature to understand the transition between cases where water scarcity is or is not experienced depending on whether water from upstream is or is not available. The analysis shows 386 million people dependent on upstream water to avoid possible stress and 306 million people dependent on upstream water to avoid possible shortage. This provides insights into implications for negotiations between sub-basins.
An analytical framework is developed drawing on ideas of regime shifts from resilience...