Articles | Volume 22, issue 5
https://doi.org/10.5194/hess-22-2891-2018
https://doi.org/10.5194/hess-22-2891-2018
Research article
 | 
16 May 2018
Research article |  | 16 May 2018

Hydro-stochastic interpolation coupling with the Budyko approach for prediction of mean annual runoff

Ning Qiu, Xi Chen, Qi Hu, Jintao Liu, Richao Huang, and Man Gao

Related authors

Characterizing 4 decades of accelerated glacial mass loss in the west Nyainqentanglha Range of the Tibetan Plateau
Shuhong Wang, Jintao Liu, Hamish D. Pritchard, Linghong Ke, Xiao Qiao, Jie Zhang, Weihua Xiao, and Yuyan Zhou
Hydrol. Earth Syst. Sci., 27, 933–952, https://doi.org/10.5194/hess-27-933-2023,https://doi.org/10.5194/hess-27-933-2023, 2023
Short summary
Changes in nonlinearity and stability of streamflow recession characteristics under climate warming in a large glaciated basin of the Tibetan Plateau
Jiarong Wang, Xi Chen, Man Gao, Qi Hu, and Jintao Liu
Hydrol. Earth Syst. Sci., 26, 3901–3920, https://doi.org/10.5194/hess-26-3901-2022,https://doi.org/10.5194/hess-26-3901-2022, 2022
Short summary
Understanding the effects of climate warming on streamflow and active groundwater storage in an alpine catchment: the upper Lhasa River
Lu Lin, Man Gao, Jintao Liu, Jiarong Wang, Shuhong Wang, Xi Chen, and Hu Liu
Hydrol. Earth Syst. Sci., 24, 1145–1157, https://doi.org/10.5194/hess-24-1145-2020,https://doi.org/10.5194/hess-24-1145-2020, 2020
Short summary
Quantification of soil water balance components based on continuous soil moisture measurement and the Richards equation in an irrigated agricultural field of a desert oasis
Zhongkai Li, Hu Liu, Wenzhi Zhao, Qiyue Yang, Rong Yang, and Jintao Liu
Hydrol. Earth Syst. Sci., 23, 4685–4706, https://doi.org/10.5194/hess-23-4685-2019,https://doi.org/10.5194/hess-23-4685-2019, 2019
Short summary
Combining analytical solutions of Boussinesq equation with the modified Kozeny–Carman equation for estimation of catchment-scale hydrogeological parameters
Man Gao, Xi Chen, and Jintao Liu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-453,https://doi.org/10.5194/hess-2019-453, 2019
Manuscript not accepted for further review

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Machine-learning- and deep-learning-based streamflow prediction in a hilly catchment for future scenarios using CMIP6 GCM data
Dharmaveer Singh, Manu Vardhan, Rakesh Sahu, Debrupa Chatterjee, Pankaj Chauhan, and Shiyin Liu
Hydrol. Earth Syst. Sci., 27, 1047–1075, https://doi.org/10.5194/hess-27-1047-2023,https://doi.org/10.5194/hess-27-1047-2023, 2023
Short summary
River hydraulic modeling with ICESat-2 land and water surface elevation
Monica Coppo Frias, Suxia Liu, Xingguo Mo, Karina Nielsen, Heidi Ranndal, Liguang Jiang, Jun Ma, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 27, 1011–1032, https://doi.org/10.5194/hess-27-1011-2023,https://doi.org/10.5194/hess-27-1011-2023, 2023
Short summary
Hydrological modeling using the Soil and Water Assessment Tool in urban and peri-urban environments: the case of Kifisos experimental subbasin (Athens, Greece)
Evgenia Koltsida, Nikos Mamassis, and Andreas Kallioras
Hydrol. Earth Syst. Sci., 27, 917–931, https://doi.org/10.5194/hess-27-917-2023,https://doi.org/10.5194/hess-27-917-2023, 2023
Short summary
Technical note: How physically based is hydrograph separation by recursive digital filtering?
Klaus Eckhardt
Hydrol. Earth Syst. Sci., 27, 495–499, https://doi.org/10.5194/hess-27-495-2023,https://doi.org/10.5194/hess-27-495-2023, 2023
Short summary
A comprehensive open-source course for teaching applied hydrological modelling in Central Asia
Beatrice Sabine Marti, Aidar Zhumabaev, and Tobias Siegfried
Hydrol. Earth Syst. Sci., 27, 319–330, https://doi.org/10.5194/hess-27-319-2023,https://doi.org/10.5194/hess-27-319-2023, 2023
Short summary

Cited articles

Arnell, N. W.: Factors controlling the effects of climate change on river flow regimes in a humid temperate environment, J. Hydrol., 132, 321–342, 1992. 
Arnell, N. W.: Grid mapping of river discharge, J. Hydrol., 167, 39–56, 1995. 
Barancourt, C., Creutin, J. D., and Rivoirard, J.: A method for delineating and estimating rainfall fields, Water Resour. Res., 28, 1133–1144, 1992. 
Berghuijs, W. R., Woods, R. A., and Hrachowitz, M.: A precipitation shift from snow towards rain leads to a decrease in streamflow, Nature Clim. Change, 4, 583–586, 2014. 
Blöschl, G.: Rainfall-runoff modelling of ungauged catchments, Article 133, in: Encyclopedia of Hydrological Sciences, edited by: Anderson, M. G., Wiley, Chicester, 2061–2080, 2005. 
Download
Short summary
The spatial runoff is decomposed into a deterministic trend and deviations from it caused by stochastic fluctuations which are described by Budyko method and stochastic interpolation. This coupled method is applied to spatially interpolate runoff in the Huaihe River basin of China. Results show that the coupled method reduces the error in overestimating low runoff and underestimating high runoff suffered by the other two methods, so it improves the prediction accuracy of the mean annual runoff.