Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Hydrol. Earth Syst. Sci., 22, 3007-3032, 2018
https://doi.org/10.5194/hess-22-3007-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Research article
22 May 2018
A spatially detailed blue water footprint of the United States economy
Richard R. Rushforth and Benjamin L. Ruddell School of Informatics, Computing, and Cyber Systems at Northern Arizona University, Flagstaff, USA
Abstract. This paper quantifies and maps a spatially detailed and economically complete blue water footprint for the United States, utilizing the National Water Economy Database version 1.1 (NWED). NWED utilizes multiple mesoscale (county-level) federal data resources from the United States Geological Survey (USGS), the United States Department of Agriculture (USDA), the US Energy Information Administration (EIA), the US Department of Transportation (USDOT), the US Department of Energy (USDOE), and the US Bureau of Labor Statistics (BLS) to quantify water use, economic trade, and commodity flows to construct this water footprint. Results corroborate previous studies in both the magnitude of the US water footprint (F) and in the observed pattern of virtual water flows. Four virtual water accounting scenarios were developed with minimum (Min), median (Med), and maximum (Max) consumptive use scenarios and a withdrawal-based scenario. The median water footprint (FCUMed) of the US is 181 966 Mm3 (FWithdrawal: 400 844 Mm3; FCUMax: 222 144 Mm3; FCUMin: 61 117 Mm3) and the median per capita water footprint (FCUMed) of the US is 589 m3 per capita (FWithdrawal: 1298 m3 per capita; FCUMax: 720 m3 per capita; FCUMin: 198 m3 per capita). The US hydroeconomic network is centered on cities. Approximately 58 % of US water consumption is for direct and indirect use by cities. Further, the water footprint of agriculture and livestock is 93 % of the total US blue water footprint, and is dominated by irrigated agriculture in the western US. The water footprint of the industrial, domestic, and power economic sectors is centered on population centers, while the water footprint of the mining sector is highly dependent on the location of mineral resources. Owing to uncertainty in consumptive use coefficients alone, the mesoscale blue water footprint uncertainty ranges from 63 to over 99 % depending on location. Harmonized region-specific, economic-sector-specific consumption coefficients are necessary to reduce water footprint uncertainties and to better understand the human economy's water use impact on the hydrosphere.
Citation: Rushforth, R. R. and Ruddell, B. L.: A spatially detailed blue water footprint of the United States economy, Hydrol. Earth Syst. Sci., 22, 3007-3032, https://doi.org/10.5194/hess-22-3007-2018, 2018.
Publications Copernicus
Download
Short summary
The National Water Economy Database is a new data resource to better understand the human economy's water use impact on the hydrosphere. NWED quantifies and maps a spatially detailed and economically complete blue water footprint for the United States, utilizing several datasets: US Geological Survey, the US Department of Agriculture, the US Energy Information Administration, the US Department of Transportation, the US Department of Energy, and the US Bureau of Labor Statistics.
The National Water Economy Database is a new data resource to better understand the human...
Share