Articles | Volume 22, issue 6
https://doi.org/10.5194/hess-22-3331-2018
https://doi.org/10.5194/hess-22-3331-2018
Research article
 | 
14 Jun 2018
Research article |  | 14 Jun 2018

Climate change over the high-mountain versus plain areas: Effects on the land surface hydrologic budget in the Alpine area and northern Italy

Claudio Cassardo, Seon Ki Park, Marco Galli, and Sungmin O

Related authors

Optimized Stochastic Representation of Soil States Model Uncertainty of WRF (v4.2) in the Ensemble Data Assimilation System
Sujeong Lim, Seon Ki Park, and Claudio Cassardo
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-28,https://doi.org/10.5194/gmd-2023-28, 2023
Revised manuscript not accepted
Short summary
Beyond precipitation: diversity of drivers of high river flows in European near-natural catchments
Manal Lam'barki, Wantong Li, Sungmin O, Chunhui Zhan, and Rene Orth
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-404,https://doi.org/10.5194/hess-2022-404, 2022
Manuscript not accepted for further review
Short summary
Optimization of snow-related parameters in the Noah land surface model (v3.4.1) using a micro-genetic algorithm (v1.7a)
Sujeong Lim, Hyeon-Ju Gim, Ebony Lee, Seungyeon Lee, Won Young Lee, Yong Hee Lee, Claudio Cassardo, and Seon Ki Park
Geosci. Model Dev., 15, 8541–8559, https://doi.org/10.5194/gmd-15-8541-2022,https://doi.org/10.5194/gmd-15-8541-2022, 2022
Short summary
Exploring the relationship between temperature forecast errors and Earth system variables
Melissa Ruiz-Vásquez, Sungmin O, Alexander Brenning, Randal D. Koster, Gianpaolo Balsamo, Ulrich Weber, Gabriele Arduini, Ana Bastos, Markus Reichstein, and René Orth
Earth Syst. Dynam., 13, 1451–1471, https://doi.org/10.5194/esd-13-1451-2022,https://doi.org/10.5194/esd-13-1451-2022, 2022
Short summary
Review article: Parameterizations of snow-related physical processes in land surface models
Won Young Lee, Hyeon-Ju Gim, and Seon Ki Park
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-319,https://doi.org/10.5194/tc-2021-319, 2021
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Understanding the influence of “hot” models in climate impact studies: a hydrological perspective
Mehrad Rahimpour Asenjan, Francois Brissette, Jean-Luc Martel, and Richard Arsenault
Hydrol. Earth Syst. Sci., 27, 4355–4367, https://doi.org/10.5194/hess-27-4355-2023,https://doi.org/10.5194/hess-27-4355-2023, 2023
Short summary
A semi-parametric hourly space–time weather generator
Ross Pidoto and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 27, 3957–3975, https://doi.org/10.5194/hess-27-3957-2023,https://doi.org/10.5194/hess-27-3957-2023, 2023
Short summary
A principal-component-based strategy for regionalisation of precipitation intensity–duration–frequency (IDF) statistics
Kajsa Maria Parding, Rasmus Emil Benestad, Anita Verpe Dyrrdal, and Julia Lutz
Hydrol. Earth Syst. Sci., 27, 3719–3732, https://doi.org/10.5194/hess-27-3719-2023,https://doi.org/10.5194/hess-27-3719-2023, 2023
Short summary
Accounting for precipitation asymmetry in a multiplicative random cascade disaggregation model
Kaltrina Maloku, Benoit Hingray, and Guillaume Evin
Hydrol. Earth Syst. Sci., 27, 3643–3661, https://doi.org/10.5194/hess-27-3643-2023,https://doi.org/10.5194/hess-27-3643-2023, 2023
Short summary
Key ingredients in regional climate modeling for improving the representation of typhoon tracks and intensities
Qi Sun, Patrick Olschewski, Jianhui Wei, Zhan Tian, Laixiang Sun, Harald Kunstmann, and Patrick Laux
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-222,https://doi.org/10.5194/hess-2023-222, 2023
Revised manuscript accepted for HESS
Short summary

Cited articles

Abiodun, B. J., Pal, J. S., Afiesimama, E. A., Gutowski, W. J., and Adedoyin, A.: Simulation of West African Monsoon using RegCM3. Part II: Impact of desertification and deforestation, Theor. Appl. Climatol., 93, 245–261, 2007. a
Adam, J. C., Hamlet, A. F., and Lettenmaier, D. P.: Implications of global climate change for snowmelt hydrology in the twenty-first century, Hydrol. Process., 23, 962–972, 2009. a
Addor, N., Rössler, O., Köplin, N., Huss, M., Weingartner, R., and Seibert, J.: Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments, Water Resour. Res., 50, 7541–7562, https://doi.org/10.1002/2014WR015549, 2014. a, b
Alo, C. A. and Anagnostou, E. N.: A sensitivity study of the impact of dynamic vegetation on simulated future climate change over Southern Europe and the Mediterranean, Int. J. Climatol., 37, 2037–2050, https://doi.org/10.1002/joc.4833, 2017. a
Anthes, R.: A cumulus parametrization scheme utilizing a one-dimensional cloud model, Mon. Weather Rev., 105, 270–286, 1977. a
Download
Short summary
Temperature and precipitation can have abnormal states due to climate change and exert a significant impact on the regional hydrologic cycle. We assess the hydrologic component changes in the Alps and northern Italy, on the basis of regional future climate (FC) conditions, using the UTOPIA land surface model. The annual mean number of dry (wet) days increase remarkably (slightly) in FCs, thus increasing the risk of severe droughts and slightly increasing the risk of floods coincidently.