Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year 4.819
  • CiteScore value: 4.10 CiteScore 4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H index value: 99 Scimago H index 99
Volume 22, issue 7 | Copyright

Special issue: Sub-seasonal to seasonal hydrological forecasting

Hydrol. Earth Syst. Sci., 22, 3601-3617, 2018
https://doi.org/10.5194/hess-22-3601-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 04 Jul 2018

Research article | 04 Jul 2018

Seasonal streamflow forecasts in the Ahlergaarde catchment, Denmark: the effect of preprocessing and post-processing on skill and statistical consistency

Diana Lucatero1, Henrik Madsen2, Jens C. Refsgaard3, Jacob Kidmose3, and Karsten H. Jensen1 Diana Lucatero et al.
  • 1Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
  • 2DHI, Hørsholm, Denmark
  • 3Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark

Abstract. In the present study we analyze the effect of bias adjustments in both meteorological and streamflow forecasts on the skill and statistical consistency of monthly streamflow and yearly minimum daily flow forecasts. Both raw and preprocessed meteorological seasonal forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) are used as inputs to a spatially distributed, coupled surface–subsurface hydrological model based on the MIKE SHE code. Streamflow predictions are then generated up to 7 months in advance. In addition to this, we post-process streamflow predictions using an empirical quantile mapping technique. Bias, skill and statistical consistency are the qualities evaluated throughout the forecast-generating strategies and we analyze where the different strategies fall short to improve them. ECMWF System 4-based streamflow forecasts tend to show a lower accuracy level than those generated with an ensemble of historical observations, a method commonly known as ensemble streamflow prediction (ESP). This is particularly true at longer lead times, for the dry season and for streamflow stations that exhibit low hydrological model errors. Biases in the mean are better removed by post-processing that in turn is reflected in the higher level of statistical consistency. However, in general, the reduction of these biases is not sufficient to ensure a higher level of accuracy than the ESP forecasts. This is true for both monthly mean and minimum yearly streamflow forecasts. We discuss the importance of including a better estimation of the initial state of the catchment, which may increase the capability of the system to forecast streamflow at longer leads.

Download & links
Publications Copernicus
Special issue
Download
Short summary
The skill of an experimental streamflow forecast system in the Ahlergaarde catchment, Denmark, is analyzed. Inputs to generate the forecasts are taken from the ECMWF System 4 seasonal forecasting system and an ensemble of observations (ESP). Reduction of biases is achieved by processing the meteorological and/or streamflow forecasts. In general, this is not sufficient to ensure a higher level of accuracy than the ESP, indicating a modest added value of a seasonal meteorological system.
The skill of an experimental streamflow forecast system in the Ahlergaarde catchment, Denmark,...
Citation
Share