Alyamani, M. and Sen, Z.: Determination of Hydraulic Conductivity from
Complete Grain-Size Distribution Curves, Groundwater, 31, 551–555,
https://doi.org/10.1111/j.1745-6584.1993.tb00587.x, 1993. a

Arya, L. and Paris, J.: A physicoempirical model to predict soil moisture
characteristics from particle-size distribution and bulk density data, Soil
Sci. Soc. Am. J., 45, 1023–1030, https://doi.org/10.2136/sssaj1981.03615995004500060004x, 1980. a

Assouline, S. and Rouault, Y.: Modeling the relationships between particle and
pore size distributions in multicomponent sphere packs: Application to the
water retention curve, Colloid. Surface. A, 127, 201–210, https://doi.org/10.1016/S0927-7757(97)00144-1,
1997. a

Boadu, F.: Hydraulic Conductivity of Soils from Grain-Size Distribution: New
Models, J. Geotech. Geoenviron., 126, 739-746,
https://doi.org/10.1061/(ASCE)1090-0241(2000)126:8(739), 2000. a

Chapuis, R.: Predicting the saturated hydraulic conductivity of sand and gravel
using effective diameter and void ratio, Can. Geotech. J., 41, 787–795, https://doi.org/10.1139/t04-022, 2004. a

Chapuis, R., Weber, S., and Duhaime, F.: Permeability test results with packed
spheres and non-plastic soils, Geotech. Test. J., 38, 950–964, https://doi.org/10.1520/GTJ20140124,
2015. a

Efron, B. and Tibshirani, R.: Improved prediction of unsaturated hydraulic
conductivity with the Mualem-van Genuchten model, Monographs on statistics
and applied probability, Champan and Hall, New York, USA, 1993. a

Gupta, S. and Larson, W.: A Model for predicting Packing density of soils using
particle-size distribution, Soil Sci. Soc. Am. J., 43, 758–764, https://doi.org/10.2136/sssaj1979.03615995004300040028x, 1979. a

Hastie, T., Tibshirani, R., and Friedman, J.: The Elements of Statistical
Learning, Springer, New York, USA, 2003. a

Hillel, D.: Fundamentals of Soil Physics, Academic Press, Inc., New York,
USA, 1980. a

Horn, R., Taubner, H., Wuttke, M., and Baumgartl, T.: Soil physical
properties related to soil structure, Soil Till. Res., 30, 187–216, 1994. a

Jorda, H., Bechtold, M., Jarvis, N., and Koestel, J.: Using boosted
regression trees to explore key factors controlling saturated and
near-saturated hydraulic conductivity, Eur. J. Soil Sci., 66, 744–756,
https://doi.org/10.1111/ejss.12249, 2015. a

Khinchin, A.: Mathematical Foundation of Information Theory, Dover
Publications, Inc., New York, USA, 1957. a

Klute, A. and Dirksen, C.: Hydraulic conductivity and diffusivity: laboratory
methods, in: Methods of Soil Analysis. Part 1. Physical and Mineralogical
Methods, edited by: Klute, A., 2nd edition, Agron. Monogr., 9, ASA,
Madison, WI, USA, 678–734, 1986. a

Kravchenko, A. and Zhang, R.: Estimating the soil water retention from
particle-size distributions: a fractal approach, Soil Sci., 163, 171–179,
https://doi.org/10.1097/00010694-199803000-00001, 1998. a

Martín, M., Rey, J., and Taguas, F.: An entropy-based parametrization of
soil textures via fractal modelling of particle-size soil distribution, P. R.
Soc. London, 457, 937–947, https://doi.org/10.1098/rspa.2000.0699, 2001. a

Martín, M., Pachepsky, Y., Rey, J., and Taguas, F.: Balanced entropy index
for soil water retention estimation, Soil Sci., 170, 759–766,
https://doi.org/10.1097/01.ss.0000190507.10804.47, 2005. a

Martín, M., Reyes, M., and Taguas, F.: Estimating soil bulk density with
information metrics of soil texture, Geoderma, 287, 66–70,
https://doi.org/10.1016/j.geoderma.2016.09.008, 2017. a

Martín, M. Á., Pachepsky, Y. A., García-Gutiérrez, C., and
Reyes, M.: On soil textural classifications and soil-texture-based
estimations, Solid Earth, 9, 159–165, https://doi.org/10.5194/se-9-159-2018, 2018. a, b

Odong, J.: Evaluation of empirical formulae for determination of hydraulic
conductivity based on grain-size analysis, J. Am. Sci., 3, 54–60, 2007. a

Pachepsky, Y. and Park, Y.: Saturated Hydraulic Conductivity of US Soils
Grouped According to Textural Class and Bulk Density, Soil Sci. Soc. Am. J.,
79, 1094–1100, https://doi.org/10.2136/sssaj2015.02.0067, 2015. a, b

Pachepsky, Y. and Rawls, W. (Eds.): Development of Pedotransfer Functions in
Soil Hydrology, vol. 30, Elsevier Science, Amsterdam, the Netherlands, 2004. a

Rawls, W. J., Gimenez, D., and Grossman, R.: Use of soil texture, bulk
density, and slope of the water retention curve to predict saturated
hydraulic conductivity, T. ASAE, 41, 983, https://doi.org/10.13031/2013.17270, 1998.
a

Schaap, M. and Leij, F.: Improved prediction of unsaturated hydraulic
conductivity with the Mualem-van Genuchten model, Soil Sci. Soc. Am. J., 64,
843–851, https://doi.org/10.2136/sssaj2000.643843x, 2000. a

Shannon, C.: A mathematical theory of communication, I. Bell Syst. Technol.
J., 27, 379–423, 1948. a, b

Tyler, S. and Wheatcraft, S.: Fractal Scaling of Soil Particle-Size
Distributions: Analysis and Limitations, Soil Sci. Soc. Am. J., 56, 362–369,
https://doi.org/10.2136/sssaj1992.03615995005600020005x, 1992. a

Wu, Q., Borkovec, M., and Sticher, H.: On particle-size distributions in
soils, Soil Sci. Soc. Amer. J., 57, 883–890,
https://doi.org/10.2136/sssaj1993.03615995005700040001x, 1993. a