Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year 4.819
  • CiteScore value: 4.10 CiteScore 4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H index value: 99 Scimago H index 99
Volume 22, issue 8 | Copyright
Hydrol. Earth Syst. Sci., 22, 4165-4181, 2018
https://doi.org/10.5194/hess-22-4165-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Technical note 07 Aug 2018

Technical note | 07 Aug 2018

Technical note: Bathymetry observations of inland water bodies using a tethered single-beam sonar controlled by an unmanned aerial vehicle

Filippo Bandini1, Daniel Olesen2, Jakob Jakobsen2, Cecile Marie Margaretha Kittel1, Sheng Wang1, Monica Garcia1, and Peter Bauer-Gottwein1 Filippo Bandini et al.
  • 1Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
  • 2National Space Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark

Abstract. High-quality bathymetric maps of inland water bodies are a common requirement for hydraulic engineering and hydrological science applications. Remote sensing methods, such as space-borne and airborne multispectral imaging or lidar, have been developed to estimate water depth, but are ineffective for most inland water bodies, because of the attenuation of electromagnetic radiation in water, especially under turbid conditions. Surveys conducted with boats equipped with sonars can retrieve accurate water depths, but are expensive, time-consuming, and unsuitable for unnavigable water bodies.

We develop and assess a novel approach to retrieve accurate and high-resolution bathymetry maps. We measured accurate water depths using a tethered floating sonar controlled by an unmanned aerial vehicle (UAV) in a lake and in two different rivers located in Denmark. The developed technique combines the advantages of remote sensing with the potential of bathymetric sonars. UAV surveys can be conducted also in unnavigable, inaccessible, or remote water bodies. The tethered sonar can measure bathymetry with an accuracy of  ∼ 2.1% of the actual depth for observations up to 35m, without being significantly affected by water turbidity, bed form, or bed material.

Download & links
Publications Copernicus
Download
Short summary
Water depth observations are essential data to forecast flood hazard, predict sediment transport, or monitor in-stream habitats. We retrieved bathymetry with a sonar wired to a drone. This system can improve the speed and spatial scale at which water depth observations are retrieved. Observations can be retrieved also in unnavigable or inaccessible rivers. Water depth observations showed an accuracy of ca. 2.1 % of actual depth, without being affected by water turbidity or bed material.
Water depth observations are essential data to forecast flood hazard, predict sediment...
Citation
Share