Articles | Volume 22, issue 8
https://doi.org/10.5194/hess-22-4281-2018
https://doi.org/10.5194/hess-22-4281-2018
Technical note
 | 
13 Aug 2018
Technical note |  | 13 Aug 2018

Technical note: GUARD – an automated fluid sampler preventing sample alteration by contamination, evaporation and gas exchange, suitable for remote areas and harsh conditions

Arno Hartmann, Marc Luetscher, Ralf Wachter, Philipp Holz, Elisabeth Eiche, and Thomas Neumann

Related authors

Modeling the effect of free convection on permafrost melting-rates in frozen rock-clefts
Amir Sedaghatkish, Frédéric Doumenc, Pierre-Yves Jeannin, and Marc Luetscher
EGUsphere, https://doi.org/10.5194/egusphere-2023-2349,https://doi.org/10.5194/egusphere-2023-2349, 2024
Short summary
Mountain permafrost in the Central Pyrenees: insights from the Devaux ice cave
Miguel Bartolomé, Gérard Cazenave, Marc Luetscher, Christoph Spötl, Fernando Gázquez, Ánchel Belmonte, Alexandra V. Turchyn, Juan Ignacio López-Moreno, and Ana Moreno
The Cryosphere, 17, 477–497, https://doi.org/10.5194/tc-17-477-2023,https://doi.org/10.5194/tc-17-477-2023, 2023
Short summary
A 4000-year long Late Holocene climate record from Hermes Cave (Peloponnese, Greece)
Tobias Kluge, Tatjana S. Münster, Norbert Frank, Elisabeth Eiche, Regina Mertz-Kraus, Denis Scholz, Martin Finné, and Ingmar Unkel
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-47,https://doi.org/10.5194/cp-2020-47, 2020
Revised manuscript not accepted
Short summary
NALPS19: sub-orbital-scale climate variability recorded in northern Alpine speleothems during the last glacial period
Gina E. Moseley, Christoph Spötl, Susanne Brandstätter, Tobias Erhardt, Marc Luetscher, and R. Lawrence Edwards
Clim. Past, 16, 29–50, https://doi.org/10.5194/cp-16-29-2020,https://doi.org/10.5194/cp-16-29-2020, 2020
Short summary
Enhanced Mediterranean water cycle explains increased humidity during MIS 3 in North Africa
Mike Rogerson, Yuri Dublyansky, Dirk L. Hoffmann, Marc Luetscher, Paul Töchterle, and Christoph Spötl
Clim. Past, 15, 1757–1769, https://doi.org/10.5194/cp-15-1757-2019,https://doi.org/10.5194/cp-15-1757-2019, 2019
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Instruments and observation techniques
Impacts of hydrofacies geometry designed from seismic refraction tomography on estimated hydrogeophysical variables
Nolwenn Lesparre, Sylvain Pasquet, and Philippe Ackerer
Hydrol. Earth Syst. Sci., 28, 873–897, https://doi.org/10.5194/hess-28-873-2024,https://doi.org/10.5194/hess-28-873-2024, 2024
Short summary
Seasonal dynamics and spatial patterns of soil moisture in a loess catchment
Shaozhen Liu, Ilja van Meerveld, Yali Zhao, Yunqiang Wang, and James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 205–216, https://doi.org/10.5194/hess-28-205-2024,https://doi.org/10.5194/hess-28-205-2024, 2024
Short summary
Effects of urbanization on the water cycle in the Shiyang River basin: based on a stable isotope method
Rui Li, Guofeng Zhu, Siyu Lu, Liyuan Sang, Gaojia Meng, Longhu Chen, Yinying Jiao, and Qinqin Wang
Hydrol. Earth Syst. Sci., 27, 4437–4452, https://doi.org/10.5194/hess-27-4437-2023,https://doi.org/10.5194/hess-27-4437-2023, 2023
Short summary
Isotopic variations in surface waters and groundwaters of an extremely arid basin and their responses to climate change
Yu Zhang, Hongbing Tan, Peixin Cong, Dongping Shi, Wenbo Rao, and Xiying Zhang
Hydrol. Earth Syst. Sci., 27, 4019–4038, https://doi.org/10.5194/hess-27-4019-2023,https://doi.org/10.5194/hess-27-4019-2023, 2023
Short summary
Seasonal variation and influence factors of river water isotopes in the East Asian monsoon region: a case study in the Xiangjiang River basin spanning 13 hydrological years
Xiong Xiao, Xinping Zhang, Zhuoyong Xiao, Zhiguo Rao, Xinguang He, and Cicheng Zhang
Hydrol. Earth Syst. Sci., 27, 3783–3802, https://doi.org/10.5194/hess-27-3783-2023,https://doi.org/10.5194/hess-27-3783-2023, 2023
Short summary

Cited articles

Ahuja, S.: Monitoring water quality. Pollution assessment, analysis, and remediation, Elsevier, Amsterdam, Boston, 2013. 
Appelo, C. A. J. and Postma, D.: Geochemistry, groundwater and pollution, 2nd edn., CRC Press Taylor & Francis Group, Boca Raton, London, New York, 2005. 
Celle-Jeanton, H., Travi, Y., and Blavoux, B.: Isotopic typology of the precipitation in the Western Mediterranean region at three different time scales, Geophys. Res. Lett., 28, 1215–1218, 2001. 
Chapin, T. P.: High-frequency, long-duration water sampling in acid mine drainage studies. A short review of current methods and recent advances in automated water samplers, Appl. Geochem., 59, 118–124, 2015. 
Clark, I. D. and Fritz, P.: Environmental isotopes in hydrogeology, 2nd print, corr., Lewis Publishers, Boca Raton, USA, 1999. 
Download
Short summary
We have developed a new mobile automated water sampling device for environmental research and other applications where waters need to be tested for compliance with environmental/health regulations. It has two main advantages over similar devices: firstly, it injects water samples directly into airtight vials to prevent any change in sample properties through contamination, evaporation and gas exchange. Secondly, it can hold up to 160 sample vials, while other devices only hold up to 24 vials.