Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
HESS | Articles | Volume 22, issue 1
Hydrol. Earth Syst. Sci., 22, 437-461, 2018
https://doi.org/10.5194/hess-22-437-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 22, 437-461, 2018
https://doi.org/10.5194/hess-22-437-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 18 Jan 2018

Research article | 18 Jan 2018

Can riparian vegetation shade mitigate the expected rise in stream temperatures due to climate change during heat waves in a human-impacted pre-alpine river?

Heidelinde Trimmel et al.
Viewed  
Total article views: 1,738 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,167 499 72 1,738 54 75
  • HTML: 1,167
  • PDF: 499
  • XML: 72
  • Total: 1,738
  • BibTeX: 54
  • EndNote: 75
Views and downloads (calculated since 23 May 2016)
Cumulative views and downloads (calculated since 23 May 2016)
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
No discussed metrics found.
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 20 Jul 2019
Publications Copernicus
Download
Short summary
In eastern Austria, where air temperature rise is double that recorded globally, stream temperatures of a human-impacted river were simulated during heat waves, as calculated by regional climate models until 2100. An increase of up to 3 °C was predicted – thus exceeding thresholds of resident cold-adapted species. Vegetation management scenarios showed that adding vegetation can reduce both absolute temperatures and its rate of increase but is not able to fully mitigate the expected rise.
In eastern Austria, where air temperature rise is double that recorded globally, stream...
Citation