Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year 4.819
  • CiteScore value: 4.10 CiteScore 4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H index value: 99 Scimago H index 99
Volume 22, issue 9 | Copyright

Special issue: Integration of Earth observations and models for global water...

Hydrol. Earth Syst. Sci., 22, 4667-4683, 2018
https://doi.org/10.5194/hess-22-4667-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 06 Sep 2018

Research article | 06 Sep 2018

The potential of global reanalysis datasets in identifying flood events in Southern Africa

Gaby J. Gründemann1,2, Micha Werner1,3, and Ted I. E. Veldkamp4,5 Gaby J. Gründemann et al.
  • 1Water Science & Engineering, IHE Delft Institute for Water Education, 2601 DA, Delft, the Netherlands
  • 2Water Resources Section, Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CN, Delft, the Netherlands
  • 3Operational Water Management, Deltares, 2629 HV, Delft, the Netherlands
  • 4Water & Climate Risk, Institute for Environmental Studies (IVM), VU University Amsterdam, 1081 HV, Amsterdam, the Netherlands
  • 5Water Department, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria

Abstract. Sufficient and accurate hydro-meteorological data are essential to manage water resources. Recently developed global reanalysis datasets have significant potential in providing these data, especially in regions such as Southern Africa that are both vulnerable and data poor. These global reanalysis datasets have, however, not yet been exhaustively validated and it is thus unclear to what extent these are able to adequately capture the climatic variability of water resources, in particular for extreme events such as floods. This article critically assesses the potential of a recently developed global Water Resources Reanalysis (WRR) dataset developed in the European Union's Seventh Framework Programme (EU-FP7) eartH2Observe (E2O) project for identifying floods, focussing on the occurrence of floods in the Limpopo River basin in Southern Africa. The discharge outputs of seven global models and ensemble mean of those models as available in the WRR dataset are analysed and compared against two benchmarks of flood events in the Limpopo River basin. The first benchmark is based on observations from the available stations, while the second is developed based on flood events that have led to damages as reported in global databases of damaging flood events. Results show that, while the WRR dataset provides useful data for detecting the occurrence of flood events in the Limpopo River basin, variation exists amongst the global models regarding their capability to identify the magnitude of those events. The study also reveals that the models are better able to capture flood events at stations with a large upstream catchment area. Improved performance for most models is found for the 0.25° resolution global model, when compared to the lower-resolution 0.5° models, thus underlining the added value of increased-resolution global models. The skill of the global hydrological models (GHMs) in identifying the severity of flood events in poorly gauged basins such as the Limpopo can be used to estimate the impacts of those events using the benchmark of reported damaging flood events developed at the basin level, though this could be improved if further details on location and impacts are included in disaster databases. Large-scale models such as those included in the WRR dataset are used by both global and continental forecasting systems, and this study sheds light on the potential these have in providing information useful for local-scale flood risk management. In conclusion, this study offers valuable insights in the applicability of global reanalysis data for identifying impacting flood events in data-sparse regions.

Download & links
Publications Copernicus
Special issue
Download
Short summary
Flooding in vulnerable and data-sparse regions such as the Limpopo basin in Southern Africa is a key concern. Data available to local flood managers are often limited, inconsistent or asymmetrically distributed. We demonstrate that freely available global datasets are well suited to provide essential information. Despite the poor performance of simulated discharges, these datasets hold potential in identifying damaging flood events, particularly for higher-resolution datasets and larger basins.
Flooding in vulnerable and data-sparse regions such as the Limpopo basin in Southern Africa is a...
Citation
Share