Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
HESS | Articles | Volume 22, issue 9
Hydrol. Earth Syst. Sci., 22, 4685–4697, 2018
https://doi.org/10.5194/hess-22-4685-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Integration of Earth observations and models for global water...

Hydrol. Earth Syst. Sci., 22, 4685–4697, 2018
https://doi.org/10.5194/hess-22-4685-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 07 Sep 2018

Research article | 07 Sep 2018

Global re-analysis datasets to improve hydrological assessment and snow water equivalent estimation in a sub-Arctic watershed

David R. Casson et al.
Viewed  
Total article views: 1,605 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,132 449 24 1,605 55 26 30
  • HTML: 1,132
  • PDF: 449
  • XML: 24
  • Total: 1,605
  • Supplement: 55
  • BibTeX: 26
  • EndNote: 30
Views and downloads (calculated since 02 May 2018)
Cumulative views and downloads (calculated since 02 May 2018)
Viewed (geographical distribution)  
Total article views: 1,507 (including HTML, PDF, and XML) Thereof 1,495 with geography defined and 12 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
No discussed metrics found.
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 24 Jan 2020
Publications Copernicus
Download
Short summary
In high-latitude (> 60° N) watersheds, measuring the snowpack and predicting of snowmelt runoff are uncertain due to the lack of data and complex physical processes. This provides challenges for hydrological assessment and operational water management. Global re-analysis datasets have great potential to aid in snowpack representation and snowmelt prediction when combined with a distributed hydrological model, though they still have clear limitations in remote boreal forest and tundra environments.
In high-latitude ( 60° N) watersheds, measuring the snowpack and predicting of snowmelt runoff...
Citation