Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 22, issue 1
Hydrol. Earth Syst. Sci., 22, 487-508, 2018
https://doi.org/10.5194/hess-22-487-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 22, 487-508, 2018
https://doi.org/10.5194/hess-22-487-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 22 Jan 2018

Research article | 22 Jan 2018

Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area

Liang Yu1, Joachim Rozemeijer2, Boris M. van Breukelen3, Maarten Ouboter4, Corné van der Vlugt4, and Hans Peter Broers5 Liang Yu et al.
  • 1Faculty of Science, Vrije University Amsterdam, Amsterdam, 1181HV, the Netherlands
  • 2Deltares, Utrecht, 3508 TC, the Netherlands
  • 3Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands
  • 4Waternet Water Authority, Amsterdam, 1096 AC, the Netherlands
  • 5TNO Geological Survey of the Netherlands, Utrecht, 3584 CB, the Netherlands

Abstract. The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage, and via water inlets from upstream polders. Diffuse anthropogenic sources, such as manure and fertiliser use and atmospheric deposition, add to the water quality problems in the polders. The major nutrient sources and pathways have not yet been clarified due to the complex hydrological system in lowland catchments with both urban and agricultural areas. In this study, the spatial variability of the groundwater seepage impact was identified by exploiting the dense groundwater and surface water monitoring networks in Amsterdam and its surrounding polders. A total of 25 variables (concentrations of total nitrogen (TN), total phosphorus (TP), NH4, NO3, HCO3, SO4, Ca, and Cl in surface water and groundwater, N and P agricultural inputs, seepage rate, elevation, land-use, and soil type) for 144 polders were analysed statistically and interpreted in relation to sources, transport mechanisms, and pathways. The results imply that groundwater is a large source of nutrients in the greater Amsterdam mixed urban–agricultural catchments. The groundwater nutrient concentrations exceeded the surface water environmental quality standards (EQSs) in 93% of the polders for TP and in 91% for TN. Groundwater outflow into the polders thus adds to nutrient levels in the surface water. High correlations (R2 up to 0.88) between solutes in groundwater and surface water, together with the close similarities in their spatial patterns, confirmed the large impact of groundwater on surface water chemistry, especially in the polders that have high seepage rates. Our analysis indicates that the elevated nutrient and bicarbonate concentrations in the groundwater seepage originate from the decomposition of organic matter in subsurface sediments coupled to sulfate reduction and possibly methanogenesis. The large loads of nutrient-rich groundwater seepage into the deepest polders indirectly affect surface water quality in the surrounding area, because excess water from the deep polders is pumped out and used to supply water to the surrounding infiltrating polders in dry periods. The study shows the importance of the connection between groundwater and surface water nutrient chemistry in the greater Amsterdam area. We expect that taking account of groundwater–surface water interaction is also important in other subsiding and urbanising deltas around the world, where water is managed intensively in order to enable agricultural productivity and achieve water-sustainable cities.

Publications Copernicus
Download
Short summary
The study shows the importance of the connection between groundwater and surface water nutrient chemistry in a lowland delta area – the greater Amsterdam area. We expect that taking account of groundwater–surface water interaction is also important in other subsiding and urbanising deltas around the world, where water is managed intensively in order to enable agricultural productivity and achieve water-sustainable cities.
The study shows the importance of the connection between groundwater and surface water nutrient...
Citation
Share