Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year 4.819
  • CiteScore value: 4.10 CiteScore 4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H index value: 99 Scimago H index 99
Volume 22, issue 9 | Copyright

Special issue: Understanding and predicting Earth system and hydrological...

Hydrol. Earth Syst. Sci., 22, 4891-4906, 2018
https://doi.org/10.5194/hess-22-4891-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 19 Sep 2018

Research article | 19 Sep 2018

Now you see it, now you don't: a case study of ephemeral snowpacks and soil moisture response in the Great Basin, USA

Rose Petersky1 and Adrian Harpold1,2,3 Rose Petersky and Adrian Harpold
  • 1Graduate Program of Hydrologic Sciences, University of Nevada, 1664 N Virginia St., Reno, NV 89557, USA
  • 2Natural Resources Environmental Science Department, University of Nevada, 1664 N Virginia St., Reno, NV 89557, USA
  • 3Global Water Center, University of Nevada, 1664 N Virginia St., Reno, NV 89557, USA

Abstract. Ephemeral snowpacks, or those that persist for  <  60 continuous days, are challenging to observe and model because snow accumulation and ablation occur during the same season. This has left ephemeral snow understudied, despite its widespread extent. Using 328 site years from the Great Basin, we show that ephemeral snowmelt causes a 70-days-earlier soil moisture response than seasonal snowmelt. In addition, deep soil moisture response was more variable in areas with seasonal snowmelt. To understand Great Basin snow distribution, we used MODIS and Snow Data Assimilation System (SNODAS) data to map snow extent. Estimates of maximum continuous snow cover duration from SNODAS consistently overestimated MODIS observations by  > 25 days in the lowest ( < 1500m) and highest ( > 2500m) elevations. During this time period snowpack was highly variable. The maximum seasonal snow cover during water years 2005–2014 was 64% in 2010 and at a minimum of 24% in 2014. We found that elevation had a strong control on snow ephemerality, and nearly all snowpacks over 2500m were seasonal except those on south-facing slopes. Additionally, we used SNODAS-derived estimates of solid and liquid precipitation, melt, sublimation, and blowing snow sublimation to define snow ephemerality mechanisms. In warm years, the Great Basin shifts to ephemerally dominant as the rain–snow transition increases in elevation. Given that snow ephemerality is expected to increase as a consequence of climate change, physics-based modeling is needed that can account for the complex energetics of shallow snowpacks in complex terrain. These modeling efforts will need to be supported by field observations of mass and energy and linked to finer remote sensing snow products in order to track ephemeral snow dynamics.

Download & links
Publications Copernicus
Special issue
Download
Short summary
Ephemeral snowpacks are snowpacks that persist for less than 2 months. We show that ephemeral snowpacks melt earlier and provide less soil water input in the spring. Elevation is strongly correlated with whether snowpacks are ephemeral or seasonal. Snowpacks were also more likely to be ephemeral on south-facing slopes than north-facing slopes at high elevations. In warm years, the Great Basin shifts to ephemerally dominant as rain becomes more prevalent at increasing elevations.
Ephemeral snowpacks are snowpacks that persist for less than 2 months. We show that ephemeral...
Citation
Share