Bavera, D., Michele, C., Pepe, M., and Rampini, A.: Melted snow volume
control in the snowmelt runoff model using a snow water equivalent
statistically based model, Hydrol. Process., 26, 3405–3415, 2012.

Berezowski, T. and Batelaan, O.: Skill of remote sensing snow products for
distributed runoff prediction, J. Hydrol., 524, 718–732, 2015.

Beven, K.: Changing ideas in hydrology – the case of physically-based
models, J. Hydrol., 105, 157–172, 1989.

Beven, K. and Binley, A.: The future of distributed models: model
calibration and uncertainty prediction, Hydrol. Process., 6, 279–298,
1992.

Beven, K.: Prophecy, reality and uncertainty in distributed hydrological
modelling, Adv. Water Resour., 16, 41–51, 1993.

Beven, K.: A manifesto for the equifinality thesis, J. Hydrol.,
320, 18–36, 2006.

Beven, K.: Environmental modelling: An uncertain future?, CRC Press, London, 2009.

Beven, K.: Facets of uncertainty: epistemic uncertainty, non-stationarity,
likelihood, hypothesis testing, and communication, Hydrolog. Sci. J., 61, 1652–1665, 2016.

Beven, K. and Smith, P.: Concepts of information content and likelihood in
parameter calibration for hydrological simulation models, J. Hydrol. Eng.,
20, A4014010, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000991, 2015.

Blasone, R.-S., Vrugt, J. A., Madsen, H., Rosbjerg, D., Robinson, B. A., and
Zyvoloski, G. A.: Generalized likelihood uncertainty estimation (GLUE) using
adaptive Markov Chain Monte Carlo sampling, Adv. Water Resour., 31,
630–648, 2008.

Blazkova, S. and Beven, K.: Flood frequency estimation by continuous
simulation for a catchment treated as ungauged (with uncertainty), Water
Resour. Res., 38, 1139, https://doi.org/10.1029/2001WR000500, 2002.

Blazkova, S. and Beven, K.: A limits of acceptability approach to model
evaluation and uncertainty estimation in flood frequency estimation by
continuous simulation: Skalka catchment, Czech Republic, Water Resour. Res., 45, W00B16, https://doi.org/10.1029/2007WR006726, 2009.

Boyle, D. P., Gupta, H. V., and Sorooshian, S.: Toward improved calibration
of hydrologic models: Combining the strengths of manual and automatic
methods, Water Resour. Res., 36, 3663–3674, 2000.

Brazier, R. E., Beven, K. J., Freer, J., and Rowan, J. S.: Equifinality and
uncertainty in physically based soil erosion models: application of the GLUE
methodology to WEPP – the Water Erosion Prediction Project – for sites in the
UK and USA, Earth Surf. Proc. Land., 25, 825–845, 2000.

Burkhart, J. F., Helset, S., Abdella, Y. S., and Lappegard, G.: Operational
Research: Evaluating Multimodel Implementations for 24/7 Runtime
Environments, Abstract H51F-1541 presented at the Fall Meeting, AGU, San
Francisco, California, 11–15 December 2016.

Choi, H. T. and Beven, K.: Multi-period and multi-criteria model
conditioning to reduce prediction uncertainty in an application of TOPMODEL
within the GLUE framework, J. Hydrol., 332, 316–336, 2007.

Clark, M. P., Kavetski, D., and Fenicia, F.: Pursuing the method of multiple
working hypotheses for hydrological modeling, Water Resour. Res., 47, W09301, https://doi.org/10.1029/2010WR009827, 2011.

Copernicus land monitoring service: CORINE land cover, available at: https://land.copernicus.eu/pan-european/corine-land-cover, last access:
29 August 2016.

Crawford, N. H. and Linsley, R. K.: Digital simulation in hydrology, Stanford
Watershed Model IV, Department of Civil Engineering, Stanford University,
California, 1966.

Dee, D. P., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M., Balsamo, G., and Bauer, P.: The ERA-Interim
reanalysis: Configuration and performance of the data assimilation system,
Q. J. Roy. Meteor. Soc., 137, 553–597, 2011.

Efstratiadis, A. and Koutsoyiannis, D.: One decade of multi-objective
calibration approaches in hydrological modelling: a review, Hydrolog. Sci. J., 55, 58–78, 2010.

Finger, D., Vis, M., Huss, M., and Seibert, J.: The value of multiple data
set calibration versus model complexity for improving the performance of
hydrological models in mountain catchments, Water Resour. Res., 51,
1939–1958, 2015.

Hall, D. K., Riggs, G. A., Salomonson, V. V., Barton, J., Casey, K., Chien,
J., DiGirolamo, N., Klein, A., Powell, H., and Tait, A.: Algorithm
theoretical basis document (ATBD) for the MODIS snow and sea ice-mapping
algorithms, Nasa Gsfc, 45, 2001.

Hall, K., George, R., Vincent, S., and Grid, V.: Updated daily MODIS/Terra
Snow Cover Daily L3 Global 500 m Grid V005, April 2011 to August 2014, in:
National Snow and Ice Data Center, Digital media, Boulder, Colorado USA,
2006.

Hanzer, F., Helfricht, K., Marke, T., and Strasser, U.: Multilevel
spatiotemporal validation of snow/ice mass balance and runoff modeling in
glacierized catchments, The Cryosphere, 10, 1859–1881,
https://doi.org/10.5194/tc-10-1859-2016, 2016.

Hassan, A. E., Bekhit, H. M., and Chapman, J. B.: Uncertainty assessment of
a stochastic groundwater flow model using GLUE analysis, J. Hydrol., 362, 89–109, 2008.

He, M., Hogue, T. S., Franz, K. J., Margulis, S. A., and Vrugt, J. A.:
Characterizing parameter sensitivity and uncertainty for a snow model across
hydroclimatic regimes, Adv. Water Resour., 34, 114–127, 2011.

Hegdahl, T. J., Tallaksen, L. M., Engeland, K., Burkhart, J. F., and Xu, C.
Y.: Discharge sensitivity to snowmelt parameterization: a case study for
Upper Beas basin in Himachal Pradesh, India, Hydrol. Res., 47,
683–700, 2016.

Hornberger, G. M. and Spear, R. C.: Approach to the preliminary analysis of
environmental systems, J. Environ. Mgmt., 12, 7–18, 1981.

Jin, X., Xu, C. Y., Zhang, Q., and Singh, V. P.: Parameter and modeling
uncertainty simulated by GLUE and a formal Bayesian method for a conceptual
hydrological model, J. Hydrol., 383, 147–155, 2010.

Kirchner, J. W.: Catchments as simple dynamical systems: Catchment
characterization, rainfall-runoff modeling, and doing hydrology backward,
Water Resour. Res., 45, W02429, https://doi.org/10.1029/2008WR006912, 2009.

Kolberg, S. A. and Gottschalk, L.: Updating of snow depletion curve with
remote sensing data, Hydrol. Process., 20, 2363–2380, 2006.

Krause, P., Boyle, D. P., and Bäse, F.: Comparison of different efficiency
criteria for hydrological model assessment, Adv. Geosci., 5, 89–97,
https://doi.org/10.5194/adgeo-5-89-2005, 2005.

Lambert, A.: Catchment models based on ISO-functions, J. Instn. Water Engrs.,
26, 413–422, 1972.

Lee, S., Klein, A. G., and Over, T. M.: A comparison of MODIS and NOHRSC
snow-cover products for simulating streamflow using the Snowmelt Runoff
Model, Hydrol. Process., 19, 2951–2972, 2005.

Liston, G. E.: Interrelationships among snow distribution, snowmelt, and
snow cover depletion: Implications for atmospheric, hydrologic, and ecologic
modeling, J. Appl. Meteorol., 38, 1474–1487, 1999.

Liston, G. E.: Representing subgrid snow cover heterogeneities in regional
and global models, J. Climate, 17, 1381–1397, 2004.

Liu, J. and Han, D.: Indices for calibration data selection of the
rainfall-runoff model, Water Resour. Res., 46, W04512,
https://doi.org/10.1029/2009WR008668, 2010.

Liu, Y., Freer, J., Beven, K., and Matgen, P.: Towards a limits of
acceptability approach to the calibration of hydrological models: Extending
observation error, J. Hydrol., 367, 93–103, 2009.

Mantovan, P. and Todini, E.: Hydrological forecasting uncertainty
assessment: Incoherence of the GLUE methodology, J. Hydrol., 330,
368–381, 2006.

Matt, F. N., Burkhart, J. F., and Pietikäinen, J.-P.: Modelling hydrologic
impacts of light absorbing aerosol deposition on snow at the catchment scale,
Hydrol. Earth Syst. Sci., 22, 179–201,
https://doi.org/10.5194/hess-22-179-2018, 2018.

Mirzaei, M., Huang, Y. F., El-Shafie, A., and Shatirah, A.: Application of
the generalized likelihood uncertainty estimation (GLUE) approach for
assessing uncertainty in hydrological models: a review, Stoch. Env. Res. Risk. A., 29, 1265–1273, 2015.

Montanari, A., Shoemaker, C. A., and van de Giesen, N.: Introduction to
special section on Uncertainty Assessment in Surface and Subsurface
Hydrology: An overview of issues and challenges, Water Resour. Res., 45,
W00B00, https://doi.org/10.1029/2009WR008471, 2009.

Morris, M. D.: Factorial sampling plans for preliminary computational
experiments, Technometrics, 33, 161–174, 1991.

Nearing, G. S., Tian, Y., Gupta, H. V., Clark, M. P., Harrison, K. W., and
Weijs, S. V.: A philosophical basis for hydrological uncertainty,
Hydrolog. Sci. J., 61, 1666–1678, 2016.

Norwegian mapping authority: Kartverket, available at:
https://www.kartverket.no/, last access: 1 September 2016.

Pappenberger, F., Beven, K. J., Ratto, M., and Matgen, P.: Multi-method
global sensitivity analysis of flood inundation models, Adv. Water Resour., 31, 1–14, 2008.

Parajka, J. and Blöschl, G.: The value of MODIS snow cover data in
validating and calibrating conceptual hydrologic models, J. Hydrol., 358, 240–258, 2008.

Parajka, J., Holko, L., Kostka, Z., and Blöschl, G.: MODIS snow cover mapping
accuracy in a small mountain catchment – comparison between open and forest
sites, Hydrol. Earth Syst. Sci., 16, 2365–2377,
https://doi.org/10.5194/hess-16-2365-2012, 2012.

Pianosi, F., Sarrazin, F., and Wagener, T.: A Matlab toolbox for global
sensitivity analysis, Environ. Modell. Softw., 70, 80–85,
2015.

Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D.
B., and Wagener, T.: Sensitivity analysis of environmental models: A
systematic review with practical workflow, Environ. Modell. Softw., 79, 214–232, 2016.

Powell, M. J.: The BOBYQA algorithm for bound constrained optimization
without derivatives, Cambridge NA Report NA2009/06, University of Cambridge,
Cambridge, 26–46, 2009.

Priestley, C. and Taylor, R.: On the assessment of surface heat flux and
evaporation using large-scale parameters, Mon. Weather Rev., 100,
81–92, 1972.

Pu, Z., Xu, L., and Salomonson, V. V.: MODIS/Terra observed seasonal
variations of snow cover over the Tibetan Plateau, Geophys. Res. Lett., 34,
L06706, https://doi.org/10.1029/2007GL029262, 2007.

Refsgaard, J. C., van der Sluijs, J. P., Højberg, A. L., and
Vanrolleghem, P. A.: Uncertainty in the environmental modelling process-a
framework and guidance, Environ. Modell. Softw., 22,
1543–1556, 2007.

Reichert, P. and Omlin, M.: On the usefulness of overparameterized
ecological models, Ecol. Model., 95, 289–299, 1997.

Renard, B., Kavetski, D., Kuczera, G., Thyer, M., and Franks, S. W.:
Understanding predictive uncertainty in hydrologic modeling: The challenge of
identifying input and structural errors, Water Resour. Res., 46, W05521,
https://doi.org/10.1029/2009WR008328, 2010.

Saltelli, A., Ratto, M., Tarantola, S., Campolongo, F., and Commission, E.:
Sensitivity analysis practices: Strategies for model-based inference,
Reliab. Eng. Syst. Safe., 91, 1109–1125, 2006.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli,
D., Saisana, M., and Tarantola, S.: Global sensitivity analysis: the primer,
John Wiley & Sons, Chichester, 2008.

Samanta, S. and Mackay, D. S.: Flexible automated parameterization of
hydrologic models using fuzzy logic, Water Resour. Res., 39, 1009,
https://doi.org/10.1029/2002WR001349, 2003.

Savenije, H. H.: Equifinality, a blessing in disguise?, Hydrol. Process., 15, 2835–2838, 2001.

Schaefli, B.: Snow hydrology signatures for model identification within a
limits-of-acceptability approach, Hydrol. Process., 30, 4019–4035,
2016.

Schoups, G. and Vrugt, J. A.: A formal likelihood function for parameter and
predictive inference of hydrologic models with correlated, heteroscedastic,
and non-Gaussian errors, Water Resour. Res., 46, W10531,
https://doi.org/10.1029/2009WR008933, 2010.

Seibert, J. and Beven, K. J.: Gauging the ungauged basin: how many discharge
measurements are needed?, Hydrol. Earth Syst. Sci., 13, 883–892,
https://doi.org/10.5194/hess-13-883-2009, 2009.

Shen, Z. Y., Chen, L., and Chen, T.: Analysis of parameter uncertainty in
hydrological and sediment modeling using GLUE method: a case study of SWAT
model applied to Three Gorges Reservoir Region, China, Hydrol. Earth Syst.
Sci., 16, 121–132, https://doi.org/10.5194/hess-16-121-2012, 2012.

Skaugen, T. and Weltzien, I. H.: A model for the spatial distribution of snow
water equivalent parameterized from the spatial variability of precipitation,
The Cryosphere, 10, 1947–1963, https://doi.org/10.5194/tc-10-1947-2016, 2016.

Statkraft: Statkraft information page, available at:
https://www.statkraft.com/, last access: 20 June 2018.

Stedinger, J. R., Vogel, R. M., Lee, S. U., and Batchelder, R.: Appraisal of
the generalized likelihood uncertainty estimation (GLUE) method, Water
Resour. Res., 44, W00B06, https://doi.org/10.1029/2008WR006822, 2008.

Sun, W., Wang, Y., Wang, G., Cui, X., Yu, J., Zuo, D., and Xu, Z.: Physically
based distributed hydrological model calibration based on a short period of
streamflow data: case studies in four Chinese basins, Hydrol. Earth Syst.
Sci., 21, 251–265, https://doi.org/10.5194/hess-21-251-2017, 2017.

Tripp, D. R. and Niemann, J. D.: Evaluating the parameter identifiability
and structural validity of a probability-distributed model for soil
moisture, J. Hydrol., 353, 93–108, 2008.

Udnæs, H. C., Alfnes, E., and Andreassen, L. M.: Improving runoff
modelling using satellite-derived snow covered area, Hydrol. Res., 38,
21–32, 2007.

Vrugt, J. A., Ter Braak, C. J., Gupta, H. V., and Robinson, B. A.:
Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in
hydrologic modeling, Stoch. Env. Res. Risk. A.,
23, 1011–1026, 2009.

Wagener, T., McIntyre, N., Lees, M., Wheater, H., and Gupta, H.: Towards
reduced uncertainty in conceptual rainfall-runoff modelling: Dynamic
identifiability analysis, Hydrol. Process., 17, 455–476, 2003.

Xiong, L. and O'Connor, K. M.: An empirical method to improve the
prediction limits of the GLUE methodology in rainfall-runoff modeling,
J. Hydrol., 349, 115–124, 2008.

Xiong, L., Wan, M., Wei, X., and O'connor, K. M.: Indices for assessing the
prediction bounds of hydrological models and application by generalised
likelihood uncertainty estimation, Hydrolog. Sci. J., 54,
852–871, 2009.