Bao, Z. X., Zhang, J. Y., Wang, G. Q., Fu, G. B, He, R. M., Yan, X. L., Jin,
J. L., Liu, Y. L., and Zhang, A. J.: Attribution for decreasing streamflow
of the Haihe River basin, northern China: Climate variability or human
activities?, J. Hydrol., 460, 117–129, https://doi.org/10.1016/j.jhydrol.2012.06.054, 2012.

Bras, R. L.: Complexity and organization in hydrology: A personal view,
Water Resour. Res., 51, 6532–6548, https://doi.org/10.1002/2015WR016958,
2015.

Cantrell, C. A.: Technical Note: Review of methods for linear least-squares
fitting of data and application to atmospheric chemistry problems, Atmos.
Chem. Phys., 8, 5477–5487, https://doi.org/10.5194/acp-8-5477-2008, 2008.

Carbone, A., Jensen, M., and Sato, A. H.: Challenges in data science: a
complex systems perspective, Chaos Soliton. Fract., 90, 1–7,
https://doi.org/10.1016/j.chaos.2016.04.020, 2016.

Chen, F., Yuan, Y. J., Wei, W. S., Fan, Z. A., Yu, S. L., Zhang, T. W.,
Zhang, R. B., Shang, H. M., and Qin, L.: Reconstructed precipitation for the
north-central China over the past 380 years and its linkages to East Asian
summer monsoon variability, Quat. Int., 283, 36–45,
https://doi.org/10.1016/j.quaint.2012.05.047, 2013.

Chu, J. T., Xia, J., Xu, C. Y., Li, L., and Wang, Z. G.: Spatial and
temporal variability of daily precipitation in Haihe River basin, 1958–2007,
J. Geogr. Sci., 20, 248–260, https://doi.org/10.1007/s11442-010-0248-0,
2010a.

Chu, J. T., Xia, J., Xu, C. Y., and Singh, V. P.: Statistical downscaling of
daily mean temperature, pan evaporation and precipitation for climate change
scenarios in Haihe River, China, Theor. Appl. Climatol., 99, 149–161,
https://doi.org/10.1007/s00704-009-0129-6, 2010b.

Dhanya, C. T. and Kumar, D. N.: Nonlinear ensemble prediction of chaotic
daily rainfall, Adv. Water Resour., 33, 327–347,
https://doi.org/10.1016/j.advwatres.2010.01.001, 2010.

Dhanya, C. T. and Kumar, D. N.: Multivariate nonlinear ensemble prediction of
daily chaotic rainfall with climate inputs, J. Hydrol., 403, 292–306,
https://doi.org/10.1016/j.jhydrol.2011.04.009, 2011.

Di, C. L., Yang, X. H., and Wang, X. C.: A four-stage hybrid model for
hydrological time series forecasting, Plos One, 9, e104663,
https://doi.org/10.1371/journal.pone.0104663, 2014.

Feldhoff, J. H., Lange, S., Volkholz, J., Donges, J. F., Kurths, J., and
Gerstengarbe, F.: Complex networks for climate model evaluation with
application to statistical versus dynamical modeling of South American
climate, Clim. Dynam., 44, 1567–1581,
https://doi.org/10.1007/s00382-014-2182-9, 2015.

Fischler, M. A. and Bolles, R. C.: Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography, Commun. ACM, 24, 381–395, 1981.

Gan, T. Y., Wang, Q., and Seneka, M.: Correlation dimensions of climate
sub-systems and their geographic variability, J. Geophys. Res.-Atmos., 107,
4728, https://doi.org/10.1029/2001JD001268, 2002.

Grassberger, P. and Procaccia, I.: Characterization of strange attractors,
Phys. Rev. Lett., 50, 346–349, https://doi.org/10.1103/PhysRevLett.50.346,
1983a.

Grassberger, P. and Procaccia, I.: Measuring the strangeness of strange
attractors, Physica D, 9, 189–208,
https://doi.org/10.1016/0167-2789(83)90298-1, 1983b.

Henon, M.: A two-dimensional mapping with a strange attractor, Commun. Math.
Phys., 50, 69–77, https://doi.org/10.1007/BF01608556, 1976.

Jayawardena, A. W. and Lai, F.: Analysis and prediction of chaos in
rainfall and stream flow time series, J. Hydrol., 153, 23–52,
https://doi.org/10.1016/0022-1694(94)90185-6, 1994.

Ji, C. C., Zhu, H., and Jiang, W.: A novel method to identify the scaling
region for chaotic time series correlation dimension calculation, Chinese
Sci. Bull., 56, 925–932, https://doi.org/10.1007/s11434-010-4180-6, 2011.

Jothiprakash, V. and Fathima, T. A.: Chaotic analysis of daily rainfall
series in Koyna reservoir catchment area, India, Stoch. Env. Res. Risk A.,
27, 1371–1381, https://doi.org/10.1007/s00477-012-0673-y, 2013.

Kyoung, M. S., Kim, H. S., Sivakumar, B., Singh, V. P., and Ahn, K. S.:
Dynamic characteristics of monthly rainfall in the Korean Peninsula under
climate change, Stoch. Env. Res. Risk A., 25, 613–625,
https://doi.org/10.1007/s00477-010-0425-9, 2011.

Lai, Y. C. and Lerner, D.: Effective scaling regime for computing the
correlation dimension from chaotic time series, Physica D, 115, 1–18,
https://doi.org/10.1016/S0167-2789(97)00230-3, 1998.

Lana, X., Burgueno, A., Martinez, M. D., and Serra, C.: Complexity and
predictability of the monthly Western Mediterranean Oscillation index, Int.
J. Climatol., 36, 2435–2450, https://doi.org/10.1002/joc.4503, 2016.

Lebecherel, L., Andreassian, V., and Charles, P.: On evaluating the
robustness of spatialproximity-based regionalization methods, J. Hydrol.,
539, 196–203, https://doi.org/10.1016/j.jhydrol.2016.05.031, 2016.

Li, F. X., Zhang, S. Y., Chen, D., He, L., and Gu, L. L.: Inter-decadal
variability of the east Asian summer monsoon and its impact on hydrologic
variables in the Haihe River Basin, China, J. Resour. Ecol., 8, 174–184,
https://doi.org/10.5814/j.issn.1674-764X.2017.02.008, 2017.

Liebert, W. and Schuster, H. G.: Proper choice of the time delay for the
analysis of chaotic time series, Phys. Lett. A, 142, 107–111,
https://doi.org/10.1016/0375-9601(89)90169-2, 1989.

Lin, H., Vogel, H., Phillips, J., and Fath, B. D.: Complexity of soils and
hydrology in ecosystems, Ecol. Model., 298, 1–3,
https://doi.org/10.1016/j.ecolmodel.2014.11.016, 2015.

Liu, C. and Xia, J.: Water problems and hydrological research in the Yellow
River and the Huai and Hai River basins of China, Hydrol. Process., 18,
2197–2210, https://doi.org/10.1002/hyp.5524, 2004.

Lloyd, S. P.: Least squares quantization in PCM, IEEE Trans. Inf. Theory, 28,
129–137, https://doi.org/10.1109/TIT.1982.1056489, 1982.

Lorenz, E. N.: Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130–141,
https://doi.org/10.1175/1520-0469(1963)020<0448:TMOV<2.0.CO;2, 1963.

Maragos, P. and Sun, F.: Measuring the fractal dimension of signals:
Morphological covers and iterative optimization, IEEE Trans. Signal Process.,
41, 108–121, https://doi.org/10.1109/TSP.1993.193131, 1993.

Meseguer-Ruiz, O., Olcina Cantos, J., Sarricolea, P., and Martin-Vide, J.:
The temporal fractality of precipitation in mainland Spain and the Balearic
Islands and its relation to other precipitation variability indices, Int. J.
Climatol., 37, 849–860, https://doi.org/10.1002/joc.4744, 2017.

Mitra, N. J., Nguyen, A. N., and Guibas, L.: Estimating surface normals in
noisy point cloud data, J. Comput. Geom. Appl., 14, 261–276,
https://doi.org/10.1145/777792.777840, 2004.

Nicolis, C. and Nicolis, G.: Is there a climatic attractor?, Nature, 311,
529–532, https://doi.org/10.1038/311529a0, 1984.

Packard, N. H., Crutchfield, J. P., Farmer, J. D., and Shaw, R. S.: Geometry
from a time series, Phys. Rev. Lett., 45, 712–716,
https://doi.org/10.1103/PhysRevLett.45.712, 1980.

Palmer, T. N.: A Nonlinear Dynamical Perspective on Climate Prediction, J.
Climate, 12, 575–591, https://doi.org/10.1175/1520-0442(1999)012<0575:ANDPOC>2.0.CO;2,
1999.

Pincus, S.: Approximate entropy (ApEn) as a complexity measure, Chaos, 5,
110–117, https://doi.org/10.1063/1.166092, 1995.

Rial, J. A., Pielke, R. A., Beniston, M., Claussen, M., Canadell, J., Cox,
P., Held, H., De Noblet-Ducoudre, N., Prinn, R., Reynolds, J. F., and Salas,
J. D.: Nonlinearities, feedbacks and critical thresholds within the Earth's
climate system, Climate Change, 65, 11–38,
https://doi.org/10.1023/B:CLIM.0000037493.89489.3f, 2004.

Rind, D.: Complexity and climate, Science, 284, 105–107,
https://doi.org/10.1126/science.284.5411.105, 1999.

Sang, Y., Wang, Z., and Li, Z.: Discrete wavelet entropy aided detection of
abrupt change: A case study in the haihe river basin, china, Entropy-Switz.,
14, 1274–1284, https://doi.org/10.3390/e14071274, 2012.

Sivakumar, B.: Rainfall dynamics at different temporal scales: A chaotic
perspective, Hydrol. Earth Syst. Sci., 5, 645–652,
https://doi.org/10.5194/hess-5-645-2001, 2001.

Sivakumar, B.: Chaos in rainfall: variability, temporal scale and zeros, J.
Hydroinform., 7, 175–184, https://doi.org/10.2166/hydro.2005.0015, 2005.

Sivakumar, B.: Chaos in Hydrology: Bridging determinism and stochasticity,
Springer, the Netherlands, https://doi.org/10.1007/978-90-481-2552-4, 2017.

Sivakumar, B. and Singh, V. P.: Hydrologic system complexity and nonlinear
dynamic concepts for a catchment classification framework, Hydrol. Earth
Syst. Sci., 16, 4119–4131, https://doi.org/10.5194/hess-16-4119-2012, 2012.

Sivakumar, B., Persson, M., Berndtsson, R., and Uvo, C. B.: Is correlation
dimension a reliable indicator of low-dimensional chaos in short hydrological
time series?, Water Resour. Res., 38, 3–1,
https://doi.org/10.1029/2001WR000333, 2002.

Sivakumar, B., Woldemeskel, F. M., and Puente, C. E.: Nonlinear analysis of
rainfall variability in Australia, Stoch. Env. Res. Risk A., 28, 17–27,
https://doi.org/10.1007/s00477-013-0689-y, 2014.

Sprott, J. C. and Rowlands, G.: Improved correlation dimension calculation,
Int. J. Bifurcat. Chaos, 11, 1865–1880,
https://doi.org/10.1142/S021812740100305X, 2001.

Takens, F.: Detecting strange attractors in turbulence. Dynamical Systems
and Turbulence, Warwick 1980, Springer, Berlin, Heidelberg, 366–381, 1981.

Wang, W. G., Shao, Q. X., Peng, S. Z., Zhang, Z. X., Xing, W. Q., An, G. Y.,
and Yong, B.: Spatial and temporal characteristics of changes in
precipitation during 1957–2007 in the Haihe River basin, China, Stoch.
Env. Res. Risk A., 25, 881–895,
https://doi.org/10.1007/s00477-011-0469-5, 2011.

Wang, W., Wei, J., Shao, Q., Xing, W., Yong, B., Yu, Z., and Jiao, X.:
Spatial and temporal variations in hydro-climatic variables and runoff in
response to climate change in the Luanhe River basin, China, Stoch. Env.
Res. Risk A., 29, 1117–1133, https://doi.org/10.1007/s00477-014-1003-3,
2015.

Wang, W., Lai, Y., and Grebogi, C.: Data based identification and prediction
of nonlinear and complex dynamical systems, Phys. Rep., 644, 1–76,
https://doi.org/10.1016/j.physrep.2016.06.004, 2016.

White, D. J., Feng, K. S., Sun, L. X., and Hubacek, K.: A hydro-economic
MRIO analysis of the Haihe River Basin's water footprint and water stress,
Ecol. Model., 318, 157–167, https://doi.org/10.1016/j.ecolmodel.2015.01.017,
2015.

Wolf, A., Swift, J. B., and Swinney, H. L.: Determining Lyapunov exponents
from a time series, Physica D, 16, 285–317,
https://doi.org/10.1016/0167-2789(85)90011-9, 1985.

Wu, C. L., Chau, K. W., and Fan, C.: Prediction of rainfall time series
using modular artificial neural networks coupled with data-preprocessing
techniques, J. Hydrol., 389, 146–167,
https://doi.org/10.1016/j.jhydrol.2010.05.040, 2010.