Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
HESS | Articles | Volume 22, issue 10
Hydrol. Earth Syst. Sci., 22, 5081–5095, 2018
https://doi.org/10.5194/hess-22-5081-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Hydrol. Earth Syst. Sci., 22, 5081–5095, 2018
https://doi.org/10.5194/hess-22-5081-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Cutting-edge case studies 02 Oct 2018

Cutting-edge case studies | 02 Oct 2018

Rainfall-runoff modelling using river-stage time series in the absence of reliable discharge information: a case study in the semi-arid Mara River basin

Petra Hulsman et al.
Related authors  
Using altimetry observations combined with GRACE to select parameter sets of a hydrological model in data scarce regions
Petra Hulsman, Hessel C. Winsemius, Claire Michailovsky, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-346,https://doi.org/10.5194/hess-2019-346, 2019
Manuscript under review for HESS
Short summary
Related subject area  
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Assessing the impacts of hydrologic and land use alterations on water temperature in the Farmington River basin in Connecticut
John R. Yearsley, Ning Sun, Marisa Baptiste, and Bart Nijssen
Hydrol. Earth Syst. Sci., 23, 4491–4508, https://doi.org/10.5194/hess-23-4491-2019,https://doi.org/10.5194/hess-23-4491-2019, 2019
Short summary
Future shifts in extreme flow regimes in Alpine regions
Manuela I. Brunner, Daniel Farinotti, Harry Zekollari, Matthias Huss, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 23, 4471–4489, https://doi.org/10.5194/hess-23-4471-2019,https://doi.org/10.5194/hess-23-4471-2019, 2019
Short summary
Time variability and uncertainty in the fraction of young water in a small headwater catchment
Michael Paul Stockinger, Heye Reemt Bogena, Andreas Lücke, Christine Stumpp, and Harry Vereecken
Hydrol. Earth Syst. Sci., 23, 4333–4347, https://doi.org/10.5194/hess-23-4333-2019,https://doi.org/10.5194/hess-23-4333-2019, 2019
Short summary
Hydrodynamic simulation of the effects of stable in-channel large wood on the flood hydrographs of a low mountain range creek, Ore Mountains, Germany
Daniel Rasche, Christian Reinhardt-Imjela, Achim Schulte, and Robert Wenzel
Hydrol. Earth Syst. Sci., 23, 4349–4365, https://doi.org/10.5194/hess-23-4349-2019,https://doi.org/10.5194/hess-23-4349-2019, 2019
Short summary
Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores
Wouter J. M. Knoben, Jim E. Freer, and Ross A. Woods
Hydrol. Earth Syst. Sci., 23, 4323–4331, https://doi.org/10.5194/hess-23-4323-2019,https://doi.org/10.5194/hess-23-4323-2019, 2019
Short summary
Cited articles  
Alvisi, S., Mascellani, G., Franchini, M., and Bárdossy, A.: Water level forecasting through fuzzy logic and artificial neural network approaches, Hydrol. Earth Syst. Sci., 10, 1–17, https://doi.org/10.5194/hess-10-1-2006, 2006. 
Beven, K. J.: Rainfall-runoff modelling: the primer, John Wiley & Sons, Chichester, England, https://doi.org/10.1002/9781119951001, 2012. 
Bulygina, N. and Gupta, H.: Correcting the mathematical structure of a hydrological model via Bayesian data assimilation, Water Resour. Res., 47, https://doi.org/10.1029/2010WR009614, 2011. 
Clarke, R. T.: Uncertainty in the estimation of mean annual flood due to rating-curve indefinition, J. Hydrol., 222, 185–190, https://doi.org/10.1016/S0022-1694(99)00097-9, 1999. 
Dessu, S. B., Melesse, A. M., Bhat, M. G., and McClain, M. E.: Assessment of water resources availability and demand in the Mara River Basin, Catena, 115, 104–114, https://doi.org/10.1016/j.catena.2013.11.017, 2014. 
Publications Copernicus
Download
Notice on corrigendum

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
In many river basins, the development of hydrological models is challenged by poor discharge data availability and quality. In contrast, water level data are more reliable, as these are direct measurements and are unprocessed. In this study, an alternative calibration method is presented using water-level time series and the Strickler–Manning formula instead of discharge. This is applied to a semi-distributed rainfall-runoff model for the semi-arid, poorly gauged Mara River basin in Kenya.
In many river basins, the development of hydrological models is challenged by poor discharge...
Citation