Articles | Volume 22, issue 10
https://doi.org/10.5194/hess-22-5111-2018
https://doi.org/10.5194/hess-22-5111-2018
Research article
 | 
04 Oct 2018
Research article |  | 04 Oct 2018

An improved method for calculating the regional crop water footprint based on a hydrological process analysis

Xiao-Bo Luan, Ya-Li Yin, Pu-Te Wu, Shi-Kun Sun, Yu-Bao Wang, Xue-Rui Gao, and Jing Liu

Related authors

Depth scaling of soil moisture content from surface to profile: multistation testing of observation operators
Xiaodong Gao, Xining Zhao, Luca Brocca, Gaopeng Huo, Ting Lv, and Pute Wu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-292,https://doi.org/10.5194/hess-2017-292, 2017
Preprint retracted
Short summary
Upscaling of soil moisture content from surface to profile: multi-station testing of observation operators
Xiaodong Gao, Xining Zhao, Luca Brocca, Ting Lv, Gaopeng Huo, and Pute Wu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-617,https://doi.org/10.5194/hess-2016-617, 2016
Preprint retracted
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Theory development
To which extent are socio-hydrology studies truly integrative? The case of natural hazards and disaster research
Franciele Maria Vanelli, Masato Kobiyama, and Mariana Madruga de Brito
Hydrol. Earth Syst. Sci., 26, 2301–2317, https://doi.org/10.5194/hess-26-2301-2022,https://doi.org/10.5194/hess-26-2301-2022, 2022
Short summary
Power and empowerment in transdisciplinary research: a negotiated approach for peri-urban groundwater problems in the Ganges Delta
Leon M. Hermans, Vishal Narain, Remi Kempers, Sharlene L. Gomes, Poulomi Banerjee, Rezaul Hasan, Mashfiqus Salehin, Shah Alam Khan, A. T. M. Zakir Hossain, Kazi Faisal Islam, Sheikh Nazmul Huda, Partha Sarathi Banerjee, Binoy Majumder, Soma Majumder, and Wil A. H. Thissen
Hydrol. Earth Syst. Sci., 26, 2201–2219, https://doi.org/10.5194/hess-26-2201-2022,https://doi.org/10.5194/hess-26-2201-2022, 2022
Short summary
A socio-hydrological framework for understanding conflict and cooperation with respect to transboundary rivers
Yongping Wei, Jing Wei, Gen Li, Shuanglei Wu, David Yu, Mohammad Ghoreishi, You Lu, Felipe Augusto Arguello Souza, Murugesu Sivapalan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 26, 2131–2146, https://doi.org/10.5194/hess-26-2131-2022,https://doi.org/10.5194/hess-26-2131-2022, 2022
Short summary
A review of the applicability of the motivations and abilities (MOTA) framework for assessing the implementation success of water resources management plans and policies
John Conallin, Nathan Ning, Jennifer Bond, Nicholas Pawsey, Lee J. Baumgartner, Dwi Atminarso, Hannah McPherson, Wayne Robinson, and Garry Thorncraft
Hydrol. Earth Syst. Sci., 26, 1357–1370, https://doi.org/10.5194/hess-26-1357-2022,https://doi.org/10.5194/hess-26-1357-2022, 2022
Short summary
Social dilemmas and poor water quality in household water systems
Gopal Penny, Diogo Bolster, and Marc F. Müller
Hydrol. Earth Syst. Sci., 26, 1187–1202, https://doi.org/10.5194/hess-26-1187-2022,https://doi.org/10.5194/hess-26-1187-2022, 2022
Short summary

Cited articles

Abbaspour, K. C.: SWAT-CUP 2012: SWAT Calibration and Uncertainty Programs – A User Manual, Eawag: Swiss Federal Institute Science and Technology, available at: https://swat.tamu.edu/media/114860/usermanual_swatcup.pdf (last access: 15 November 2016), 2012. 
Abbaspour, K. C., Vejdani, M., and Haghighat S.: SWAT-CUP calibration and uncertainty programs for SWAT, in: Modsim 2007: International Congress on Modelling and Simulation: Land, Water and Environmental Management: Integrated Systems for Sustainability, Christchurch, New Zealand, 2007. 
AHID – Administration of Hetao Irrigation District: Bayannaoer Department of Water, Inner Mongolia Autonomous Region, China, available at: http://www.htgq.gov.cn/, last access: 5 September 2015. 
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration: Guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper 56, FAO, Rome, 1998. 
Bao, C. and Fang, C.: Water Resources Flows Related to Urbanization in China: Challenges and Perspectives for Water Management and Urban Development, Water Resour. Manage., 26, 531–552, https://doi.org/10.1007/s11269-011-9930-y, 2012. 
Download
Short summary
At present, the water footprint calculated by the quantitative method of crop production water footprint is only a field-scale water footprint, which does not contain all the water consumption of the crop growth process, so its calculated crop production water footprint is incomplete. In this study, the hydrological model SWAT was used to analyze the real water consumption in the course of crop growth, so that the actual water consumption of the crops could be more accurately reflected.