Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
HESS | Articles | Volume 22, issue 10
Hydrol. Earth Syst. Sci., 22, 5159–5173, 2018
https://doi.org/10.5194/hess-22-5159-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Hydrol. Earth Syst. Sci., 22, 5159–5173, 2018
https://doi.org/10.5194/hess-22-5159-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 04 Oct 2018

Research article | 04 Oct 2018

Socio-hydrological spaces in the Jamuna River floodplain in Bangladesh

Md Ruknul Ferdous et al.

Related authors

Brief communication: Comparing hydrological and hydrogeomorphic paradigms for global flood hazard mapping
Giuliano Di Baldassarre, Fernando Nardi, Antonio Annis, Vincent Odongo, Maria Rusca, and Salvatore Grimaldi
Nat. Hazards Earth Syst. Sci., 20, 1415–1419, https://doi.org/10.5194/nhess-20-1415-2020,https://doi.org/10.5194/nhess-20-1415-2020, 2020
Short summary
Concurrent wet and dry hydrological extremes at the global scale
Paolo De Luca, Gabriele Messori, Robert L. Wilby, Maurizio Mazzoleni, and Giuliano Di Baldassarre
Earth Syst. Dynam., 11, 251–266, https://doi.org/10.5194/esd-11-251-2020,https://doi.org/10.5194/esd-11-251-2020, 2020
Short summary
A flood-risk-oriented, dynamic protection motivation framework to explain risk reduction behaviours
Philippe Weyrich, Elena Mondino, Marco Borga, Giuliano Di Baldassarre, Anthony Patt, and Anna Scolobig
Nat. Hazards Earth Syst. Sci., 20, 287–298, https://doi.org/10.5194/nhess-20-287-2020,https://doi.org/10.5194/nhess-20-287-2020, 2020
Hess Opinions: An interdisciplinary research agenda to explore the unintended consequences of structural flood protection
Giuliano Di Baldassarre, Heidi Kreibich, Sergiy Vorogushyn, Jeroen Aerts, Karsten Arnbjerg-Nielsen, Marlies Barendrecht, Paul Bates, Marco Borga, Wouter Botzen, Philip Bubeck, Bruna De Marchi, Carmen Llasat, Maurizio Mazzoleni, Daniela Molinari, Elena Mondino, Johanna Mård, Olga Petrucci, Anna Scolobig, Alberto Viglione, and Philip J. Ward
Hydrol. Earth Syst. Sci., 22, 5629–5637, https://doi.org/10.5194/hess-22-5629-2018,https://doi.org/10.5194/hess-22-5629-2018, 2018
Short summary
Reproducing an extreme flood with uncertain post-event information
Diana Fuentes-Andino, Keith Beven, Sven Halldin, Chong-Yu Xu, José Eduardo Reynolds, and Giuliano Di Baldassarre
Hydrol. Earth Syst. Sci., 21, 3597–3618, https://doi.org/10.5194/hess-21-3597-2017,https://doi.org/10.5194/hess-21-3597-2017, 2017
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Theory development
A watershed classification approach that looks beyond hydrology: application to a semi-arid, agricultural region in Canada
Jared D. Wolfe, Kevin R. Shook, Chris Spence, and Colin J. Whitfield
Hydrol. Earth Syst. Sci., 23, 3945–3967, https://doi.org/10.5194/hess-23-3945-2019,https://doi.org/10.5194/hess-23-3945-2019, 2019
Short summary
Role-play simulations as an aid to achieve complex learning outcomes in hydrological science
Arvid Bring and Steve W. Lyon
Hydrol. Earth Syst. Sci., 23, 2369–2378, https://doi.org/10.5194/hess-23-2369-2019,https://doi.org/10.5194/hess-23-2369-2019, 2019
Short summary
Using a coupled agent-based modeling approach to analyze the role of risk perception in water management decisions
Jin-Young Hyun, Shih-Yu Huang, Yi-Chen Ethan Yang, Vincent Tidwell, and Jordan Macknick
Hydrol. Earth Syst. Sci., 23, 2261–2278, https://doi.org/10.5194/hess-23-2261-2019,https://doi.org/10.5194/hess-23-2261-2019, 2019
Short summary
Geostatistical interpolation by quantile kriging
Henning Lebrenz and András Bárdossy
Hydrol. Earth Syst. Sci., 23, 1633–1648, https://doi.org/10.5194/hess-23-1633-2019,https://doi.org/10.5194/hess-23-1633-2019, 2019
Short summary
Flooded by jargon: how the interpretation of water-related terms differs between hydrology experts and the general audience
Gemma J. Venhuizen, Rolf Hut, Casper Albers, Cathelijne R. Stoof, and Ionica Smeets
Hydrol. Earth Syst. Sci., 23, 393–403, https://doi.org/10.5194/hess-23-393-2019,https://doi.org/10.5194/hess-23-393-2019, 2019
Short summary

Cited articles

Allison, M. A.: Historical Changes in the Ganges-Brahmaputra Delta Front, J. Coast. Res., 14, 1269–1275, 1998. 
Barendrecht, M. H., Viglione, A., and Blöschl, G.: A dynamic framework for flood risk, Water Security, 1, 3–11, https://doi.org/10.1016/j.wasec.2017.02.001, 2017. 
BBS: Bangladesh Population Census 1974, Village Population Statistics, Bangladesh Bureau of Statistics, Dhaka, 1974. 
BBS: Bangladesh Population Census 1981, Community Tables of all Thanas, Bangladesh Bureau of Statistics, Dhaka, 1986. 
BBS: Bangladesh Population Census 1991, Socio-economic and demographic report, Bangladesh Bureau of Statistics, Dhaka, 1994. 
Publications Copernicus
Download
Short summary
Socio-hydrological space (SHS) is a concept that enriches the study of socio-hydrology because it helps understand the detailed human–water interactions in a specific location. The concept suggests that the interactions between society and water are place-bound because of differences in social processes and river dynamics. This would be useful for developing interventions under disaster management, but also other development goals. SHS provides a new way of looking at socio-hydrological systems.
Socio-hydrological space (SHS) is a concept that enriches the study of socio-hydrology because...
Citation