Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year 4.819
  • CiteScore value: 4.10 CiteScore 4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H index value: 99 Scimago H index 99
Volume 22, issue 10 | Copyright
Hydrol. Earth Syst. Sci., 22, 5175-5189, 2018
https://doi.org/10.5194/hess-22-5175-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 05 Oct 2018

Research article | 05 Oct 2018

Design water demand of irrigation for a large region using a high-dimensional Gaussian copula

Xinjun Tu1,2, Yiliang Du1, Vijay P. Singh3,4, Xiaohong Chen1,2, Kairong Lin1, and Haiou Wu1 Xinjun Tu et al.
  • 1Center of Water Resources and Environment, Sun Yat-sen University, Guangzhou, 510275, China
  • 2Center of Water Security Engineering and Technology in Southern China of Guangdong, Guangzhou, 510275, China
  • 3Department of Biological and Agricultural Engineering, Texas A&M University, 2117 College Station, Texas 77843, USA
  • 4Zachry Department of Civil Engineering, Texas A&M University, 2117 College Station, Texas 77843, USA

Abstract. Spatial and frequency distributions of precipitation should be considered in determining design water demand of irrigation for a large region. In Guangdong Province, South China, as a study case, an eight-dimensional joint distribution of precipitation for agricultural sub-regions was developed. A design procedure for water demand of irrigation for a given frequency of precipitation of the entire region was proposed. Water demands of irrigation in the entire region and its sub-regions using three design methods, i.e., equalized frequency (EF), typical year (TY) and most-likely weight function (MLW), were compared. Results demonstrated that the Gaussian copula efficiently fitted the high-dimensional joint distribution of eight sub-regional precipitation values. The Kendall frequency was better than the conventional joint frequency to analyze the linkage between the frequency of precipitation of the entire region and individual sub-regions. For given frequencies of precipitation of the entire region, design water demands of irrigation of the entire region among the MLW, EF and TY methods slightly differed, but those of individual sub-regions of the MLW and TY methods fluctuated around the demand lines of the EF method. The alterations of design water demand in sub-regions were more complicated than those in the entire region. The design procedure using the MLW method in association with a high-dimensional copula, which simulated individual univariate distributions, captured their dependences for multi-variables, and built a linkage between regional frequency and sub-regional frequency of precipitation, is recommended for design water demand of irrigation for a large region.

Download & links
Publications Copernicus
Download
Short summary
For given frequencies of precipitation of a large region, design water demands of irrigation of the entire region among three methods, i.e., equalized frequency, typical year and most-likely weight function, slightly differed, but their alterations in sub-regions were complicated. A design procedure using the most-likely weight function in association with a high-dimensional copula, which built a linkage between regional frequency and sub-regional frequency of precipitation, is recommended.
For given frequencies of precipitation of a large region, design water demands of irrigation of...
Citation
Share