Abdul Rauf, U. F. and Zeephongsekul, P.: Copula based analysis of rainfall
severity and duration: a case study, Theor. Appl. Climatol., 115,
153–166, 2014.

Aussenegg, W. and Cech, C.: A new copula approach for high-dimensional real
world portfolios, Working Paper Series by the University of Applied Sciences
bfi Vienna, 68, 1–33,
https://www.researchgate.net/publication/267391266, 2012.

Barbe, P., Genest, C., Ghoudi, K., and Remillard, B.: On Kendall's process, J.
Multivar. Anal., 58, 197–229, 1996.

Cai, J. B., Liu, Y., Cai, L. Z., and Wu, Y. Y.: A method of determining suitable
probability for irrigation project design, Irrig. Drain., 20, 30–31,
2001 (in Chinese).

Cai, X., Hejazi, M. I., and Wang, D.: Value of probabilistic weather forecasts:
assessment by real–time optimization of irrigation scheduling, J. Water
Resour. Plann. Manage., 137, 391–403, 2011.

Chen, L., Singh, V. P., Guo, S., and Zhou, J.: Copula-based method for multisite
monthly and daily streamflow simulation, J. Hydrol., 528, 369–384, 2015.

Chowdhary, H., Escobar, L. A., and Singh, V. P.: Identification of suitable
copulas for bivariate frequency analysis of flood peak and flood volume
data, Hydrol. Res., 42, 193–215, 2011.

Corbella, S. and Stretch, D. D.: Multivariate return periods of sea storms
for coastal erosion risk assessment, Nat. Hazards Earth Syst. Sci., 12,
2699–2708, https://doi.org/10.5194/nhess-12-2699-2012, 2012.

Creal, D. D. and Tsay, R. S.: High dimensional dynamic stochastic copula
models, J. Econometrics, 189, 335–345, 2015.

Davidson, B. and Hellegers, P.: Estimating the own–price elasticity of
demand for irrigation water in the Musi catchment of India, J. Hydrol., 408,
226–234, 2011.

Dobric, J. and Schmid, F.: A goodness of fit test for copulas based on
Rosenblatt's transformation, Comput. Stat. Data Anal., 51, 4633–4642, 2007.

Ganguli, P. and Reddy, M. J.: Evaluation of trends and multivariate frequency
analysis of droughts in three meteorological subdivisions of western India,
Int. J. Climatol., 34, 911–928, 2014.

Genest, C. and Rivest, L. P.: Statistical inference procedures for bivariate
Archimedean copulas, J. Am. Stat. Assoc., 88, 1034–1043, 1993.

Genest, C., Favre, A. C., Béliveau, J., and Jacques, C.: Metaelliptical
copulas and their use in frequency analysis of multivariate hydrological
data, Water Resour. Res., 43, 223–236, 2007.

Genest, C., Remillard, B., and Beaudoin, D.: Goodness–of–fit tests for
copulas: a review and a power study, Insur. Math. Econ., 44, 199–213, 2009.

Gohari, A., Eslamian, S., Abedi-Koupaei, J., Bavani, A. M., Wang, D. B., and
Madani, K.: Climate change impacts on crop production in Iran's Zayandeh-Rud
River Basin, Sci. Total Environ., 442, 405–419, 2013.

Gräler, B., van den Berg, M. J., Vandenberghe, S., Petroselli, A.,
Grimaldi, S., De Baets, B., and Verhoest, N. E. C.: Multivariate return
periods in hydrology: a critical and practical review focusing on synthetic
design hydrograph estimation, Hydrol. Earth Syst. Sci., 17, 1281–1296,
https://doi.org/10.5194/hess-17-1281-2013, 2013.

Griffin, R. C.: Achieving water use efficiency in irrigation districts, J.
Water Resour. Plann. Manage., 132, 434–442, 2006.

Gringorten, I. I.: A plotting rule for extreme probability paper, J. Geophys.
Res., 68, 813–814, 1963.

Lankford, B.: Localising irrigation efficiency, Irrig. Drain., 55, 345–362,
2010.

Leenhardt, D., Trouvat, J. L., Gonzalès, G., Peramaud, V., Prats, S., and
Bergez, J. E.: Estimating irrigation demand for water management on a
regional scale: II. Validation of ADEAUMIS, Agr. Water Manage., 68, 207–232,
2004.

Leenhardt, D., Angevin, F., Biarnès, A., Colbach, N., and Mignolet, C.:
Describing and Locating Cropping Systems on a Regional Scale,
in: Sustainable Agriculture, Vol. 2, Springer, Netherlands, 85–95, 2011.

Lian, J., Xu, K., and Ma, C.: Joint impact of rainfall and tidal level on flood risk
in a coastal city with a complex river network: a case study of Fuzhou City, China, Hydrol.
Earth Syst. Sci., 17, 679-689, doi: 10.5194/hess-17-679-2013, 2013.
Liu, Z., Guo, S., Li, T., Hu, Y., and Li, L.: Interval estimation method for design
flood region composition, J. Hydraul. Eng., 46, 543-550, doi: 10.13243/j.cnki.slxb.20140928, 2015. (in Chinese)

Liu, Z., Guo, S., Li, T., Hu, Y., and Li, L.: Interval estimation method for
design flood region composition, J. Hydraul. Eng., 46, 543–550, 2015 (in
Chinese).

Massey, F. J.: The Kolmogorov–Smirnov test for goodness of fit, J. Am. Stat.
Assoc., 46, 68–78, 2012.

Meza, F. J., Wilks, D. S., Gurovich, L., and Bambach, N.: Impacts of climate
change on irrigated agriculture in the Maipo Basin, Chile: reliability of
water rights and changes in the demand for irrigation, J. Water Resour.
Plann. Manage., 138, 421–430, 2012.

Michele, C., Salvadori, G., Vezzoli, R., and Pecora, S.: Multivariate
assessment of droughts: frequency analysis and dynamic return period, Water
Resour. Res., 49, 6985–6994, 2013.

Nappo, G. and Spizzichino, F.: Kendall distributions and level sets in
bivariate exchangeable survival models, Inform. Sci., 179, 2878–2890,
2009.

Nelsen, R. B.: An Introduction to Copulas, Springer, New York, 2006.

Rosenblatt, M.: Remarks on a multivariate transformation, Ann. Math. Stat.,
23, 470–472, 1952.

Salvadori, G. and Michele, C. D.: Frequency analysis via copulas: Theoretical
aspects and applications to hydrological events, Water Resour. Res., 40,
229–244, 2004.

Salvadori, G., De Michele, C., and Durante, F.: On the return period and
design in a multivariate framework, Hydrol. Earth Syst. Sci., 15, 3293–3305,
https://doi.org/10.5194/hess-15-3293-2011, 2011.

Salvadori, G., Durante, F., and Michele, C. D.: Multivariate return period
calculation via survival functions, Water Resour. Res., 49, 2308–2311,
2013.

Serinaldi, F.: An uncertain journey around the tails of multivariate
hydrological distributions, Water Resour. Res., 49, 6527–6547, 2013.

Tarjuelo, J. M., Olalla, F. D. S., and Pereira, L. S.: Land and water use:
environmental management tools and practices – Preface, Agr. Water Manage.,
77, 1–3, 2005.

Thomas, A.: Agricultural irrigation demand under present and future climate
scenarios in China, Global Planet. Change, 60, 306–326, 2008.

Tu, X., Singh, V. P., Chen, X., Ma, M., Zhang, Q., and Zhao, Y.: Uncertainty
and variability in bivariate modeling of hydrological droughts, Stoch.
Environ. Res. Risk A., 30, 1317–1334, 2016.

Tu, X., Du, Y., Chen, X., Chai, Y., and Qing, Y.: Modeling and design on
joint distribution of precipitation and tide in the coastal city, Adv. Water
Sci., 28, 49–58, 2017a (in Chinese).

Tu, X., Du, X., Singh, V. P., Chen, X., Du, Y., and Li, K.: Joint Risk of
Interbasin Water Transfer and Impact of the Window size of Sampling low flows
under Environmental Change, J. Hydrol., 554, 1–11, 2017b.

Volpi, E. and Fiori, A.: Hydraulic structures subject to bivariate hydrological
loads: Return period, design, and risk assessment, Water Resour. Res., 50, 885–897, 2014.

Wisser, D., Frolking, S., Douglas, E. M., Fekete, B. M., Vorosmarty, C. J.,
and Schumann, A. H.: Global irrigation water demand: Variability and
uncertainties arising from agricultural and climate data sets, Geophys. Res.
Lett., 35, L24408, https://doi.org/10.1029/2008GL035296, 2008.

Wriedt, G., Velde, M. V. D., Aloe, A., and Bouraoui, F.: Estimating irrigation
water requirements in Europe, J. Hydrol., 373, 527–544, 2009.

Xie, H., Luo, Q., and Huang, J.: Synchronous asynchronous encounter analysis of
multiple hydrologic regions based on 3D copula function, Adv. Water Sci.,
23, 186–193, 2012 (in Chinese).

Yan, B., Guo, S., Chen, L., and Liu, P.: Flood encountering risk analysis for
the Yangtze River and Qingjiang River, J. Hydraul. Eng., 41, 553–559,
2010a (in Chinese).

Yan, B., Guo, S., Guo, J., Chen, L., Liu, P., and Chen, H.: Regional design
flood composition based on copula function, J. Hydraul. Eng., 29, 60–65,
2010b (in Chinese).

Zhang, L. and Singh, V. P.: Bivariate flood frequency analysis using the copula
method, J. Hydrol. Eng., 11, 150–164, 2006.

Zhang, Q., Li, J., Chen, X., and Bai, Y.: Spatial Variability of Probability
Distribution of Extreme Precipitation in Xinjiang, Acta Geogr. Sin., 66,
3–12, 2011 (in Chinese).

Zhang, Q., Li, J., Singh, V. P., and Xu, C.: Copula-based spatio-temporal
patterns of precipitation extremes in China, Int. J. Climatol., 33,
1140–1152, 2013.

Zhang, Q., Gu, X., Singh, V. P., Kong, D., and Chen, X.: Spatiotemporal behavior
of floods and droughts and their impacts on agriculture in China, Global
Planet. Change, 131, 63–72, 2015a.

Zhang, Q., Sun, P., Li, J., Singh, V. P., and Liu, J.: Spatiotemporal properties
of droughts and related impacts on agriculture in Xinjiang, China, Int. J.
Climatol., 35, 1254–1266, 2015b.

Zhang, Q., Xiao, M. Z., and Singh, V. P.: Uncertainty evaluation of copula
analysis of hydrological droughts in the East River basin, China, Global
Planet. Change, 129, 1–9, 2015c.