Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year 4.819
  • CiteScore value: 4.10 CiteScore 4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H index value: 99 Scimago H index 99
Volume 22, issue 10 | Copyright
Hydrol. Earth Syst. Sci., 22, 5259-5280, 2018
https://doi.org/10.5194/hess-22-5259-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 15 Oct 2018

Research article | 15 Oct 2018

Rainfall disaggregation for hydrological modeling: is there a need for spatial consistence?

Hannes Müller-Thomy1,2,*, Markus Wallner3, and Kristian Förster1,4,5 Hannes Müller-Thomy et al.
  • 1Institute of Hydrology and Water Resources Management, Leibniz Universität Hannover, 30175 Hanover, Germany
  • 2Institute of Hydraulic Engineering and Water Resources Management, Vienna University of Technology, Vienna, 1040, Austria
  • 3bpi Hannover – Beratende Ingenieure, 30177 Hanover, Germany
  • 4Institute of Geography, University of Innsbruck, Innsbruck, 6020, Austria
  • 5alpS – Centre for Climate Change Adaptation, Innsbruck, 6020, Austria
  • *previously published under the name Hannes Müller

Abstract. In this study, the influence of disaggregated rainfall products with different degrees of spatial consistence on rainfall–runoff modeling results is analyzed for three mesoscale catchments in Lower Saxony, Germany. For the disaggregation of daily rainfall time series into hourly values, a multiplicative random cascade model is applied. The disaggregation is applied on a station by station basis without consideration of surrounding stations; hence subsequent steps are then required to implement spatial consistence. Spatial consistence is represented here by three bivariate spatial rainfall characteristics that complement each other. A resampling algorithm and a parallelization approach are evaluated against the disaggregated time series without any subsequent steps. With respect to rainfall, clear differences between these three approaches can be identified regarding bivariate spatial rainfall characteristics, areal rainfall intensities and extreme values. The resampled time series lead to the best agreement with the observed ones. Using these different rainfall products as input to hydrological modeling, we hypothesize that derived runoff statistics – with emphasis on seasonal extreme values – are subject to similar differences as well. However, an impact on the extreme values' statistics of the hydrological simulations forced by different rainfall approaches cannot be detected. Several modifications of the study design using rainfall–runoff models with and without parameter calibration or using different rain gauge densities lead to similar results in runoff statistics. Only if the spatially highly resolved rainfall–runoff WaSiM model is applied instead of the semi-distributed HBV-IWW model can slight differences regarding the seasonal peak flows be identified. Hence, the hypothesis formulated before is rejected in this case study. These findings suggest that (i) simple model structures might compensate for deficiencies in spatial representativeness through parameterization and (ii) highly resolved hydrological models benefit from improved spatial modeling of rainfall.

Publications Copernicus
Download
Short summary
Rainfall time series are disaggregated from daily to hourly values to be used for rainfall–runoff modeling of mesoscale catchments. Spatial rainfall consistency is implemented afterwards using simulated annealing. With the calibration process applied, observed runoff statistics (e.g., summer and winter peak flows) are represented well. However, rainfall datasets with under- or over-estimation of spatial consistency lead to similar results, so the need for a good representation can be questioned.
Rainfall time series are disaggregated from daily to hourly values to be used for...
Citation
Share