Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year 4.819
  • CiteScore value: 4.10 CiteScore 4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H index value: 99 Scimago H index 99
Volume 22, issue 10 | Copyright
Hydrol. Earth Syst. Sci., 22, 5299-5316, 2018
https://doi.org/10.5194/hess-22-5299-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 16 Oct 2018

Research article | 16 Oct 2018

Discharge hydrograph estimation at upstream-ungauged sections by coupling a Bayesian methodology and a 2-D GPU shallow water model

Alessia Ferrari1, Marco D'Oria1, Renato Vacondio1, Alessandro Dal Palù2, Paolo Mignosa1, and Maria Giovanna Tanda1 Alessia Ferrari et al.
  • 1Department of Engineering and Architecture, University of Parma, Parma, Italy
  • 2Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, Italy

Abstract. This paper presents a novel methodology for estimating the unknown discharge hydrograph at the entrance of a river reach when no information is available. The methodology couples an optimization procedure based on the Bayesian geostatistical approach (BGA) with a forward self-developed 2-D hydraulic model. In order to accurately describe the flow propagation in real rivers characterized by large floodable areas, the forward model solves the 2-D shallow water equations (SWEs) by means of a finite volume explicit shock-capturing algorithm. The two-dimensional SWE code exploits the computational power of graphics processing units (GPUs), achieving a ratio of physical to computational time of up to 1000. With the aim of enhancing the computational efficiency of the inverse estimation, the Bayesian technique is parallelized, developing a procedure based on the Secure Shell (SSH) protocol that allows one to take advantage of remote high-performance computing clusters (including those available on the Cloud) equipped with GPUs. The capability of the methodology is assessed by estimating irregular and synthetic inflow hydrographs in real river reaches, also taking into account the presence of downstream corrupted observations. Finally, the procedure is applied to reconstruct a real flood wave in a river reach located in northern Italy.

Publications Copernicus
Download
Short summary
The knowledge of discharge hydrographs is useful for flood modelling purposes, water resource management, and the design of hydraulic structures. This paper presents a novel methodology to estimate the unknown discharge hydrograph in an ungauged river section using only water level information recorded downstream. A Bayesian procedure is coupled with a 2-D hydraulic model parallelized for GPUs. Finally, the proposed procedure has been applied to estimate inflow hydrographs in real river reaches.
The knowledge of discharge hydrographs is useful for flood modelling purposes, water resource...
Citation
Share