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Abstract. Recently, deep learning (DL) has emerged as a
revolutionary and versatile tool transforming industry appli-
cations and generating new and improved capabilities for
scientific discovery and model building. The adoption of
DL in hydrology has so far been gradual, but the field is
now ripe for breakthroughs. This paper suggests that DL-
based methods can open up a complementary avenue to-
ward knowledge discovery in hydrologic sciences. In the new
avenue, machine-learning algorithms present competing hy-
potheses that are consistent with data. Interrogative meth-
ods are then invoked to interpret DL models for scientists
to further evaluate. However, hydrology presents many chal-
lenges for DL methods, such as data limitations, heterogene-
ity and co-evolution, and the general inexperience of the hy-
drologic field with DL. The roadmap toward DL-powered
scientific advances will require the coordinated effort from
a large community involving scientists and citizens. Integrat-
ing process-based models with DL models will help allevi-
ate data limitations. The sharing of data and baseline mod-
els will improve the efficiency of the community as a whole.
Open competitions could serve as the organizing events to
greatly propel growth and nurture data science education in

hydrology, which demands a grassroots collaboration. The
area of hydrologic DL presents numerous research oppor-
tunities that could, in turn, stimulate advances in machine
learning as well.

1 Overview

Deep learning (DL) is a suite of tools centered on artfully
designed large-size artificial neural networks. The deep net-
works at the core of DL are said to have “depth” due to their
multi-layered structures, which help deep networks represent
abstract concepts about the data (Schmidhuber, 2015). Given
input attributes that describe an instance, deep networks can
be trained to make predictions of some dependent variables,
either continuous or categorical, for this instance. For exam-
ple, for standard computer vision problems, deep networks
can recognize the theme or objects from a picture (Guo et
al., 2016; He et al., 2016; Simonyan and Zisserman, 2014)
or remotely sensed images (Zhu et al., 2017). For sequen-
tial data, DL can associate natural language sequences with
commands (Baughman et al., 2014; Hirschberg and Man-
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ning, 2015) or predict the action of an actor in the next video
frame (Vondrick et al., 2016). DL can also generate (or syn-
thesize) images that carry certain artistic styles (Gatys et al.,
2016) or a natural language response to questions (Leviathan
and Matias, 2018; Zen and Sak, 2015). With the support
of deep architectures, deep networks can automatically en-
gineer relevant concepts and features from large datasets,
instead of requiring human experts to define these features
(Sect. 2.2.2). As a foundational component of modern arti-
ficial intelligence (AI), DL has made substantial strides in
recent years and helped to solve problems that have resisted
AI for decades (LeCun et al., 2015).

While DL has stimulated exciting advances in many dis-
ciplines and has become the method of choice in some ar-
eas, hydrology so far has only had a very limited set of DL
applications (Shen, 2018) (hereafter referred to as Shen18).
Despite scattered reports of promising DL results (Fang et
al., 2017; Laloy et al., 2017, 2018; Tao et al., 2016; Van-
dal et al., 2017; Zhang et al., 2018), hydrologists have not
widely adopted these new tools. This collective opinion pa-
per argues that there are many opportunities in hydrological
sciences where DL can help provide both stronger predictive
capabilities and a complementary avenue toward scientific
discovery. We then reflect on why it has been challenging to
harness the power of DL and big data in hydrology and ex-
plore what we can do as a community to incubate progress.
Readers who are less familiar with machine learning or deep
learning are referred to a companion review paper (Shen18),
which provides a more comprehensive and technical back-
ground than this opinion paper. Many details behind the ar-
guments in Sect. 2 are provided in Shen18.

2 The emergence of a complementary research avenue

We are witnessing the growth of three pillars needed for DL
to support a research avenue that is complementary to tradi-
tional hypothesis-driven research: big hydrologic data, pow-
erful machine learning algorithms, and interrogative methods
(such as visualization and techniques) to extract interpretable
knowledge from the trained networks. This new avenue starts
from data, uses DL methods to generate hypotheses, and ap-
plies interrogative methods to help us understand hydrologic
system functioning. We discuss these aspects in the follow-
ing sections.

2.1 With more data, opportunities arise

The fundamental supporting factor for emerging opportuni-
ties with DL is the growth of big hydrologic data, with all
surface, sub-surface, urban, infrastructure, and ecosystem di-
mensions. In this paper, hydrology refers to both the com-
plete natural and engineered water cycle and associated pro-
cesses in the ecosystem and geologic media. There are ever
increasing amounts of hydrologic data available through re-

mote sensing (see a summary in Srinivasan, 2013) and data
compilations. For example, satellite-based datasets include
precipitation, surface soil moisture (Entekhabi, 2010; Jack-
son et al., 2016; Mecklenburg et al., 2008), vegetation states
and indices, e.g., Knyazikhin et al. (1999), derived evapo-
transpiration products (Mu et al., 2011), terrestrial water stor-
age (Wahr et al., 2006), snow cover (Hall et al., 2006), and a
planned mission for estimating streamflows (Pavelsky et al.,
2014), etc. On the data compilation side, there are now com-
pilations of geologic (Gleeson et al., 2014) and soil datasets;
these include the centralized management of streamflow and
groundwater data in the United States, Europe, parts of South
America and Asia, or globally for some large rivers (GRDC,
2017), water chemistry, groundwater samples, and other bio-
geophysical datasets. The Consortium of Universities for the
Advancement of Hydrologic Science, Inc. (CUAHSI) oper-
ates two systems for the discovery and the archiving of water
data: the Hydrologic Information System (CUAHSI, 2018c)
for time series and HydroShare for all water data types (Hors-
burgh et al., 2016). An Internet of Water (Aspen, 2017) has
been proposed and is beginning to develop, thereby improv-
ing access to these emerging datasets.

Moreover, unconventional data sources are starting to
emerge. A high-resolution sensing of Earth will be pro-
vided by increasing numbers of CubeSats, unmanned aerial
vehicles, balloons, inexpensive photogrammetric sensing,
and many other sources (McCabe et al., 2017). These new
sources provide new forms and scales of measurements not
envisioned before. For example, cell phone signal strength
and cell-phone pictures can contribute to high-resolution
monitoring of rainfall intensity (Allamano et al., 2015). In-
expensive infrared camera images can detect water levels in
complex urban water flows (Hiroi and Kawaguchi, 2016).
Internet-of-Things (IoT) sensors embedded in the water in-
frastructure can transmit data about the states of water in our
environment (Zhang et al., 2018). These new sources of in-
formation provide unprecedented volumes and multifaceted
coverages of the natural and built environment. However,
since each new data source has its own characteristics and
peculiarities, the identification of the appropriate approaches
to fully exploit their value, especially synergistically, creates
a significant challenge. In contrast, DL models can be built
without significant human expertise and extensive manual la-
bor to rapidly derive useful information from these data.

2.2 DL: a big step forward

2.2.1 Rapid adoption

The field of hydrology has witnessed the flows and ebbs of
several generations of machine learning methods in the past
few decades, from regularized linear regression (Tibshirani
and Tibshirani, 1994) to support vector regression (Drucker
et al., 1996), from genetic programming (Koza, 1992) to ar-
tificial neural networks (ANNs) (Chang et al., 2014; Chen et
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Table 1. Number of papers returned from searches on ISI Web of Science.

year DL-non-CS DL-CS ML-non-CS ML-CS DL/ML-CS DL/ML-non-CS

2011 0 23 1068 1838 1 % 0 %
2012 15 25 1310 1899 1 % 1 %
2013 35 80 1677 2360 3 % 2 %
2014 84 238 2228 3050 8 % 4 %
2015 308 709 3074 4405 16 % 10 %
2016 841 1462 4414 5361 27 % 19 %
2017 2035 2723 6125 5860 46 % 33 %

DL-CS results were obtained by searching for “topic” (TS) = “deep learning”, “and”, “research area” (SU)= “computer
science”; ML-CS was obtained the same way as DL-CS, only that “deep learning” was replaced by “machine learning”;
DL-non-CS was obtained by TS= “deep learning” not SU= “computer science” not SU= education. Education was
removed because entries in this category were not related to our definition of DL. There were also 19 articles in 2011
where deep learning was about education in disciplines other than SU=Education. Therefore, 19 was used as a blank
value and also subtracted from the DL-non-CS column. DL / ML-CS is ratio of DL-CS to ML-CS expressed as a
percentage. DL / ML-non-CS was obtained similarly.

al., 2018; Hsu et al., 1995, 1997, 2002), from classification
and regression trees to random forest (Ho, 1995), and from
a Gaussian process (Snelson and Ghahramani, 2006) to a ra-
dial basis function network (Moradkhani et al., 2004). There
are especially numerous hydrologic applications of ANNs,
including the modeling of rainfall-runoff, groundwater, water
quality, salinity, rainfall estimation, and soil parameterization
(Govindaraju, 2000; Maier et al., 2010 – see a brief discus-
sion in Appendix A in Shen18). Each approach offered use-
ful solutions to a set of problems, but each also faced its own
limitations. As a result, over time, some may have grown dis-
passionate about progress in machine learning, while some
others may have concerns about whether DL represents real
progress or is just “hype.”

The progress in AI brought forth by DL to various in-
dustries and scientific disciplines is revolutionary (Sect. 4
in Shen18) and can no longer be ignored by the hydrologic
community. Major technology firms have rapidly adopted
and commercialized DL-powered AI (Evans et al., 2018).
For example, Google has re-oriented its research priority
from “mobile-first” to “AI-first” (Dignan, 2018). The ben-
efits of these industrial investments can now be felt by ordi-
nary users of their services such as machine translation and
digital assistants, which can engage in conversations sound-
ing like humans (Leviathan and Matias, 2018). Moreover,
AI patents grew at a 34 % compound annual growth rate be-
tween 2013 and 2017, apparently after DL’s breakthroughs in
2012 (Columbus, 2018). Also reported in Columbus (2018),
more than 65 % of data professionals responded to a survey
indicating AI as their company’s most significant data initia-
tive for next year.

DL is gaining adoption in a wide range of scientific disci-
plines and, in some areas, has started to substantially trans-
form those disciplines. The fast growth is clearly witnessed
from literature searches. Since 2011, the number of entries
with DL as a topic increased almost exponentially, show-
ing around a 100 % compound annual growth rate through

2017 (Table 1). DL evolved from occupying less than 1 % of
machine learning (ML) entries in computer science (CS) in
2011 to 46 % in 2017. This change showcases a massive con-
version from traditional machine learning to DL within com-
puter science. Other disciplines lagged slightly behind, but
also experienced an exponential increase, with the DL / ML
ratio jumping from 0 % in 2011 to 33 % in 2017. As reviewed
in Shen18, DL has enhanced the statistical power of data in
high-energy physics, and the use of DL accounts for a 25 %
increase in the experimental dataset (Baldi et al., 2015). In
biology, DL has been used to predict potential pathological
implications from genetic sequences (Angermueller et al.,
2016). DL models fed with raw-level data have been shown
to outperform those with expert-defined features when they
predict high-level outcomes, e.g., toxicity, from molecular
compositions (Goh et al., 2017). Just like other methods, DL
may eventually be replaced by newer ones, but that is not a
reason to hold out when progress is possible.

Many of the above-mentioned advances were driven by
DL’s domination in AI competitions:

– The ImageNet Challenge is an open competition to eval-
uate algorithms for object detection and image classifi-
cation (Russakovsky et al., 2014). Topics change dur-
ing each contest, and a dataset of ∼ 14 million tagged
images and videos were cumulatively compiled, with
convenient and uniform data access provided by the
organizers. The 2010 Challenge was won by a large-
scale support vector machine (SVM). A deep convo-
lutional neural network first won this contest in 2012
(Krizhevsky et al., 2012). This victory heralded the ex-
ponential growth of DL in popularity. Since then, and
until 2017 (the last contest), the vast majority of entrants
and all contest winners used CNNs, which are preferred
to over other methods by large margins (Schmidhuber,
2015).

– The IJCNN traffic sign recognition contest, which is
composed of 50 000 images (48 pixels× 48 pixels), wit-
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nessed visual recognition performance (that exceeded
human capability) using CNN-based methods (Stal-
lkamp et al., 2011). CNNs also performed better than
humans in the recognition of cancers from medical im-
ages (Yu et al., 2016).

– The TIMIT speech corpus is a dataset that holds the
recordings from 630 English speakers. Models based
on long short-term memory (LSTM) significantly out-
performed the hidden Markov model (HMM) results
(Graves et al., 2013) in recognizing the speeches. Simi-
larly, LSTM-based methods significantly outperformed
all statistical approaches in keyword spotting (Inder-
muhle et al., 2012), optical character recognition, lan-
guage identification, text-to-speech synthesis, social
signal classification, machine translation, and Chinese
handwriting recognition.

– An LSTM-based speech recognition system has
achieved “human parity” in conversational speech
recognition on the Switchboard corpus (Xiong et al.,
2016). A parallel version achieved best-known pixel-
wise brain image segmentation results on the MR-
BrainS13 dataset (Stollenga et al., 2015).

– A time-series forecasting contest, the Computational In-
telligence in Forecasting Competition, was won by a
combination of fuzzy and exponential models in 2015
when no LSTM was present, but LSTM won the con-
test in 2016 (CIF, 2016).

In contrast, only a handful of applications of big data DL
could be found in hydrology, but they have already demon-
strated great promise. Vision DL has been employed to re-
trieve precipitation from satellite images, where it demon-
strated a more materially superior performance than earlier-
generation neural networks (Tao et al., 2017, 2018). A gen-
erative adversarial network (GAN) was used to imitate and
generate the scanning of images of geologic media (Laloy
et al., 2018), where the authors showed realistic replication
of training image patterns. Time-series DL was employed to
temporally extend satellite-sensed soil moisture observations
(Fang et al., 2017) and was found to be more reliable than
simpler methods. Time series DL rainfall-runoff models that
are confined to certain geographic regions have been created
(Kratzert et al., 2018). There are also DL studies, based on
smaller datasets, to help predict water flows in the urban envi-
ronment (Assem et al., 2017) and in the water infrastructure
(Zhang et al., 2018). In addition to utilizing big data, DL was
able to create valuable, big datasets that could not have oth-
erwise been possible. For example, utilizing DL, researchers
were able to generate new datasets for tropical cyclones, at-
mospheric rivers, and weather fronts (Liu et al., 2016; Mat-
suoka et al., 2017) by tracking them. Machine learning has
also been harnessed to tackle the convection parameteriza-
tion issue in climate modeling (Gentine et al., 2018).

2.2.2 Technical advances

Underpinning the powerful performance of DL are its techni-
cal advances. The deep architectures have several distinctive
advantages: (1) Deep networks are designed with the capac-
ity to represent extremely complex functions. (2) After train-
ing, the intermediate layers can perform modular functions,
which can be migrated to other tasks in a process called trans-
fer learning, and can extend the value of the training data.
(3) The hidden layer structures have been designed to au-
tomatically extract features, which helps in dramatically re-
ducing labor, expertise, and the trial and error time needed
for feature engineering. (4) Compared to earlier models like
classification trees, most of the deep networks are differen-
tiable, meaning that we can calculate derivatives of outputs
with respect to inputs or the parameters in the network. This
feature enables highly efficient training algorithms that ex-
ploit these derivatives. Moreover, the differentiability of neu-
ral networks enables the querying of DL models for the sen-
sitivity analysis of output to input parameters, a task of key
importance in hydrology.

Metaphorically, the intermediate (or hidden) layers in DL
algorithms can be understood as workbenches or placehold-
ers for tools that are to be built by deep networks themselves.
These hidden layers are trained to calculate certain features
from the data, which are then used by downstream lay-
ers to predict the dependent variables. For example, Yosin-
ski (2015) showed that some intermediate layers in a deep
vision-recognition network are responsible for identifying
the location of human or animal faces; Karpathy et al. (2015)
showed that some hidden cells in a text prediction network
act as line-length counters, while some others keep track
of whether the text is in quotes or not. These functionali-
ties were not bestowed by the network designers, but they
emerged by themselves after network training. Earlier net-
work architectures either did not have the needed depth or
were not designed in an artful way, such that the interme-
diate layers could be effectively trained. For more technical
details, refer to an introduction in Schmidhuber (2015) and
Shen (2018).

Given that deep networks can identify features without a
human guide, it follows that they may extract features that the
algorithm designers were unaware of or did not intentionally
encode the network to do. If we could believe that there is
latent knowledge about the hydrologic system that humans
are not yet aware of but can be determined from data, the
automatic extraction of features leads to a potential pathway
toward knowledge discovery. For example, deep networks re-
cently showed that grid-like neuron response structures auto-
matically emerge at intermediate network layers for a net-
work trained to imitate how mammals perform navigation,
providing strong support to a Nobel-winning neuroscience
theory about the functioning of these structures (Banino et
al., 2018).
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Deep networks may be more robust than simpler models
despite their large size if they are regularized properly (reg-
ularization techniques apply a penalty to model complexity
to make the model more robust) and are chosen based on
validation errors in a two-stage approach (Kawaguchi et al.,
2017). Effective regularization techniques include (i) early
stopping, which monitors the training progress on a separate
validation set and stop the training once validation metrics
start to deteriorate and/or (ii) novel regularization techniques
such as dropout (Srivastava et al., 2014). DL architectures ad-
dressed issues like the vanishing gradient (Hochreiter, 1998).
The training of the large networks today was computation-
ally implausible until scientists started to exploit the paral-
lel processing power of graphical processing units (GPUs).
Nowadays, new application-specific integrated circuits have
also been created to specifically tackle DL, although DL ar-
chitectures are still evolving.

Primary types of successful deep learning architectures in-
clude convolutional neural networks (CNN) for image recog-
nition (Krizhevsky et al., 2012; Ranzato et al., 2006), the
long short-term memory (LSTM) (Greff et al., 2015; Hochre-
iter and Schmidhuber, 1997) networks for time-series mod-
eling, variational autoencoders (VAE) (Kingma and Welling,
2013), and deep belief networks for pattern recognition and
data (typically image but also text, sound, etc.) generation
(Sect. 3.2 in Shen18). Besides these new architectures, a
novel generative model concept called the generative ad-
versarial network (GAN) has become an active area of re-
search. The key characteristic of GANs is that they are
learned by creating a competition between the actual gener-
ative model or “generator” and a discriminator in a zero-sum
game framework (Goodfellow et al., 2014) in which these
components are learned jointly. Compared to other genera-
tive models, GANs potentially offer much greater flexibil-
ity in the patterns to be generated. The power of GANs has
been recognized recently in the geoscientific community, es-
pecially in the machine learning research inspired by physics,
where GANs have been used to generate certain complicated
physical, environmental, and socio-economic systems (Al-
bert et al., 2018; Laloy et al., 2018).

While showing many advantages, DL models will require
a substantial amount of computing expertise. The tuning
of hyper-parameters, e.g., network size, learning rate, batch
size, etc., often requires a priori experiences and trial and er-
ror. The computational paradigm, e.g., computing on graph-
ical processing units, is also substantially different from typ-
ical hydrologists’ educational background. The fundamental
theories on why DL generalizes so well have not been ma-
turely developed (Sect. 2.7 in Shen18). In the ongoing de-
bates, some argue that a large part of DL’s power comes from
memorization while others counter that DL prioritizes learn-
ing simple patterns (Arpit et al., 2017; Krueger et al., 2017),
and a two-stage procedure (training and testing) also helps
(Kawaguchi et al., 2017). Despite these explanations, it has
been found in vision DL that deep networks can be fooled by

adversarial examples where small, unperceivable perturba-
tions to input images sometimes cause large changes in pre-
dictions, leading to incorrect outcomes (Goodfellow et al.,
2015; Szegedy et al., 2013). It remains to be seen whether
such adversarial examples exist for hydrologic DL applica-
tions. If we can recreate adversarial examples, they can be
added into the training dataset to improve the robustness of
the model (Ororbia et al., 2016).

2.3 Network interrogative methods to enable
knowledge extraction from deep networks

Conventionally, neural networks were primarily used to ap-
proximate mappings between inputs and outputs. The focus
was put on improving predictive accuracy. In terms of the
use of neural networks in scientific research, then, there has
been a major concern that DL and more generally machine
learning are referred to as black boxes that cannot be under-
stood by humans and, thus, cannot serve to advance scien-
tific understanding. At the same time, data-driven research
may lack clearly stated hypotheses, which is in contrast to
traditional hypothesis-driven scientific methods. There has
been significant pressure from both inside and outside the DL
community to make the network decisions more explainable.
For example, new (as of January 2018) European data pri-
vacy laws dictate that automated individual decision-making,
which significantly influences the algorithm’s users, must
provide a “right to explanation” where a user can ask for an
explanation of an algorithmic decision (Goodman and Flax-
man, 2016).

Some recent progress in DL research focused on address-
ing these concerns. Notably, a new sub-discipline, known as
“AI neuroscience” has produced useful interrogative tech-
niques to help scientists interpret the DL model (see litera-
ture in Sect. 3.2 in Shen18). The main classes of interpretive
methods include (i) the reverse engineering of the hidden lay-
ers, which attributes deep network decisions to input features
or a subset of inputs; (ii) transferring knowledge from deep
networks to interpretable, reduced-order models; and (iii) vi-
sualization of network activations. Many scientists have also
devised case-by-case ad hoc methods, e.g., to investigate the
correlation between inputs and cell activations (Shen, 2018;
Voosen, 2017).

So far, interpretive DL methods have not been employed
in hydrology or even the geosciences. However, to give some
examples from other domains, in medical image diagnosis,
some researchers used reverse engineering methods to show
which pixel on an image led the network to make its deci-
sion about anatomy classifications (Kumar and Menkovski,
2016). They found that the network traced its decisions to
image landmarks mostly often used by human experts. In
more recent research, AI researchers trained their network
not only to classify an image but also to didactically explain
why the decision was made and why an image is one class
instead of another (Fig. 1). Extending this idea to the pre-
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Figure 1. Authors trained a joint classification and explanation network for image classification. The bolded text is a “class-relevant” attribute
(a distinguishing attribute for the class) in the explanation. Their classification network extracts visual features (regions on the image)
responsible for the decision. Then, the explanation network links these regions to distinguishing words in a dictionary to form an explanation
that explains the reason for the classification and why it does not belong to other classes. This level of explanation may be difficult to achieve
for hydrologic problems due to limited supervising data (annotated dictionary for classes), but it is possible to borrow the idea of associating
features in the input data with some descriptive words (Hendricks et al., 2016).

cipitation retrieval problem in hydrology (Tao et al., 2017,
2018), we could let DL inform us of which features on the
satellite cloud image are helpful for reducing bias in precipi-
tation retrieval.

2.4 The complementary research avenue

As the interrogative methods grow further, a research av-
enue complementary to the traditional hypothesis-driven one
emerges toward attaining knowledge (Fig. 2). The data-
driven research avenue can be divided into four steps: (i) hy-
potheses are generated by machine learning algorithms from
data; (ii) the validation step is where data is withheld from
training and, differently from training, are employed to eval-
uate the machine-learning-generated hypotheses; (iii) inter-
pretive methods are employed to extract data-consistent and
human-understandable hypotheses (Mount et al., 2016; de-
scribed in Sect. 2.3); (iv) the retained hypotheses are pre-
sented to scientists for analysis and further data collection;
and the process iterates.

The classical avenue, especially when applied to mod-
eling studies, attracts non-uniqueness and subjectivity. To
give a concrete example, consider a classical problem of
rainfall-runoff modeling. Suppose a hydrologist found that
hydrologic responses in several nearby basins are differ-
ent. Some basins produce flashier peaks while others have

smaller peaks in summer, large seasonal fluctuation, and
large peak streamflows only in winter. Taking a modeling
approach, the hydrologist might invoke a conceptual hydro-
logic model, e.g., Topmodel (Beven, 1997), only to find that
the model results do not adequately describe the observed
heterogeneity in the rainfall-runoff response. The hydrolo-
gist might hypothesize that the different behaviours are due
to heterogeneity in soil texture, which is not well represented
in the model. Subsequently, the hydrologist incorporates pro-
cesses that represent soil spatial heterogeneity, such as re-
fined soil pedo-transfer functions that can differentiate be-
tween the soil types in different regions. Perhaps with some
parameter adjustments, this model can provide streamflow
predictions that are qualitatively similar to the observations.
This procedure then increases the hydrologist’s confidence
that the heterogeneity in soil hydraulic parameters is indeed
responsible for their different hydrologic responses. How-
ever, this improvement is not conclusive due to process equi-
finality; there can be alternative processes that can also result
in similar outcomes, e.g., the influence of soil thickness, karst
geology, terrain, or drainage density. The identification of po-
tential improvement might be dependent on the hydrologist’s
intuition or preconceptions, which are nonetheless important
but are potentially biased. While the intention of a process-
based model may be deductive (Beven, 1989), the example
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Figure 2. Comparing two alternative avenues toward gaining knowledge from data. In the classical avenue, scientists compile and interpret
data, form hypotheses, and (optionally) build models to describe data and hypotheses (the green pathway). Then the model results with data
to affirm or reject the hypotheses and the feedbacks (the yellow pathway) allow the scientist to revise the model and iterate. In the data-driven
avenue, scientists collect data and define the target variables of DL models (the green path). Then interpretive methods are invoked to extract
data-consistent and human-understandable hypotheses (the yellow path). There must be a hypotheses validation step where data withheld
from training is used to evaluate or reject the hypotheses.

process given above is, in fact, abductive reasoning (Joseph-
son and Josephson, 1994), as it seeks a plausible but not ex-
haustive thorough explanation of the phenomenon. Further-
more, incorporating all the physics into the model may prove
technically challenging, computationally impractical, or too
time-consuming.

Compared to the classical avenue, the inductive data-
driven approach allows us to more efficiently explore a larger
set of hypotheses. Although it cannot be said that the ma-
chine learning algorithms present no human bias (because in-
puts are human-defined and some hyper-parameters are em-
pirically adjusted), the larger set of hypotheses presented will
at least greatly reduce that risk. First, let us examine a data-
driven approach based on classification and regression tree
algorithms (CART-based – Fang and Shen, 2017). We could
start with physiographic data for many basins in this region,
including terrain, soil type, soil thickness, etc. We can use
CART to model the process-based model’s errors, which al-
lows us to separate out the conditions under which these er-
rors occur more frequently. We let the pattern emerge out
of data without enforcing a strong human preconceived hy-
pothesis. Attention must be paid to the robustness of the data
mining and utilize holdout datasets or cross-validation to ver-
ify the generality of the conclusion. Data may suggest that
soil thickness is the main reason for the error. Or if data do
not prefer one hypothesis over the other, then all hypotheses
are equally possible and cannot be ruled out. This advantage
of DL can be summarized in a short phrase, “an algorithm
has no ego”. On a practical level, this approach can more
efficiently and simultaneously examine multiple competing
hypotheses.

One example of such analyses was carried out by Fang and
Shen (2017), where differences in basin storage–streamflow
correlations were explained by physical factors using CART,
an earlier-generation data mining method (Fig. 3). The data

mining analysis allowed patterns to emerge, which inspired
hypotheses about how key factors that control the hydro-
logic functioning of different systems, such as soil thickness
and soil bulk density, are important controls of streamflow–
storage relationships. In another example, the data-mining
analysis showed that drought recovery time is associated with
temperature and precipitation, while biodiversity has only
secondary importance (Schwalm et al., 2017). Scientists need
to define the predictors and general model types, but they
do not pose strongly constraining hypotheses about the con-
trolling factors and instead “let the data speak”. The key to
this approach is a large amount of data from which patterns
emerge.

However, in working with DL models, we need to further
resort to interrogative methods to interpret the results (Fig. 2
right panel). For example, we can construct DL models to
predict the errors of the process-based model and then use
visualization techniques to see which variable, under which
condition, lead to the error. Because DL can absorb a large
amount of data, it can find commonality among data as well
as identify differences. Whereas CART models are limited
by the amount of data and face stability problems in lower
branches (data are exponentially less at lower branches), DL
models may produce a more robust interpretation.

The machine learning paradigm lends us to finding “unrec-
ognized linkages” (Wagener et al., 2010) or complex patterns
in the data that humans could not easily realize or capture.
Owing to the strong capability of DL, it can better approxi-
mate the “best achievable model” (BAM) for the mapping of
relations between inputs and output. As such, it lends support
to measuring the information content contained in the inputs
about the output. Nearing et al. (2016) utilized Gaussian pro-
cess regression to approximate the BAM. DL can play simi-
lar roles and can also allow for modeling, perhaps in a more
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Figure 3. We calculated storage–streamflow correlation patterns over the contiguous United States (CONUS) and divided small or mesoscale
basins into multiple classes. We studied which physical factors most cleanly separate different correlation patterns. Panel (a) shows the
distribution of basin classes on and to the south of the Appalachian ranges. Panel (b) shows a one-level CART model that finds the most
effective criterion to split basins into clusters with different distances to class #1 (storage and streamflow are highly correlated across all flow
regimes) correlation patterns. This CART model does not achieve complete separation of class #1 basins, because it is based on criteria that
could be established using input attributes, and there is also resolution limitation with terrestrial water storage observations, which are from
the GRACE satellite. However, on a large spatial scale, what separates the blue class and the green class (low correlation between storage and
high flow bands) turned out to be soil thickness. It suggests the blue basins in the south have high correlation because they have thick soils,
which facilitates infiltration, water storage, and increases the importance of groundwater-contributed streamflow (Fang and Shen, 2017).

thorough way. The simplicity of building DL models and al-
tering inputs makes them an ideal test bed for new ideas.

Outputs from the hidden layers of deep networks can now
be visualized to gain insights about the transformations per-
formed on the input data by the network (Samek et al., 2017).
For image recognition tasks, one can invert the DL model to
find out the parts of the inputs that led the network to make
a certain decision (Mahendran and Vedaldi, 2015). There are
also means to visualize outputs from recurrent networks, e.g.,
showing the conditions under which certain cells are acti-
vated (Karpathy et al., 2015). These visualizations can illus-
trate the relationships that the data-driven model has identi-
fied.

Considering the above potential benefits, the data-driven
avenue should at least be given an opportunity in hydrologi-
cal sciences discovery. However, this avenue may be uncom-
fortable for some. In the classical avenue, the scientist must
originate the hypotheses before constructing models; in the
data-driven one, the data mining and knowledge discovery
process is a precursor step to the main hypotheses forma-
tion – hypotheses cannot be generated before the data mining
analysis (Mount et al., 2016). Specifically, hypotheses can no
longer be clearly stated during the proposal stage of research.

Granted, the interrogative methods as a whole are new,
and time is required for them to grow. We need to note that
the nascent “DL neuroscience” literature did not exist un-
til 2015. However, if we outright reject the complementary
avenue based on the habitual thinking that neural networks
are black boxes, we may deny ourselves an opportunity for
breakthroughs.

3 Challenges and opportunities for DL in hydrology

The field of hydrology has a unique set of challenges that are
also research opportunities for DL. Many of these science
challenges have, to date, not been effectively addressed us-
ing traditional methods and cannot be sufficiently tackled by
individual research groups. Some challenges for which DL
approaches might be exploited are presented below.

Observations in hydrology and water science are generally
regionally and temporally imbalanced. For example, while
streamflow observations are relatively dense in the United
States, such data are sparse in many other parts of the world,
because measurements have either not been made or are not
made accessible. There is often a dearth of observations that
can be used as comprehensive training datasets for DL al-
gorithms. Few hydrologic applications have as much data as
available to standard AI research applications such as imag-
ine recognition or natural language processing. Remote sens-
ing of hydrologic variables also has limitations, including the
effects of canopies and clouds, which can limit observations,
the temporal density of observations because of orbital paths,
and observation footprints, which create challenges when
trying to validate satellite observations with field point mea-
surements. A body of literature studying this problem across
different geographic regions can be loosely summarized un-
der the topic of “prediction in ungauged basins” (PUB – Hra-
chowitz et al., 2013). PUB problems pose a significant chal-
lenge to data-driven methods.

Global change is altering the hydrologic and related cy-
cles, and hydrologists must now make predictions in antici-
pation of changes beyond previously observed ranges (Wa-
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gener et al., 2010). More frequent extremes have been ob-
served for many parts of the world, and such extremes have
been projected to occur even more frequently in the future
(Stocker et al., 2013). Data-driven methods must demon-
strate their capability to make reasonable predictions when
applied out of the range of the training dataset.

Observations of the water cycle tend to focus on one aspect
of the water cycle and seldom offer a complete description.
For example, we can estimate total terrestrial water storage
(Wahr, 2004) or the top 5 cm surface soil moisture via multi-
ple satellite missions. It is difficult, however, to directly com-
bine such observations of components of the water cycle into
a complete picture of the water cycle. Challenges, then, are
merging distinct observations with all their space–time dis-
continuities to aid predictions, validating models, and pro-
viding a more complete understanding of the global water
cycle.

Hydrologic data are accompanied by a large amount of
strongly heterogeneous (Blöschl, 2006) “contextual vari-
ables” such as land use, climate, geology, and soil proper-
ties. The proper scale at which to represent heterogeneity in
natural systems is a vexing problem (Archfield et al., 2015).
For example, representing the micro-scale heterogeneity in
soil moisture and texture is not computationally realistic in
hydrologic models. The scale at which heterogeneity should
be represented varies with the setting and elements of the
water cycle (Ajami et al., 2016). Moreover, while we rec-
ognize that heterogeneity exists in contextual features, many
of these features, such as soil properties and hydrogeology,
are poorly characterized across landscapes, but both features
play an important role in controlling water movement. Het-
erogeneity needs to be adequately represented without rad-
ically bloating the parameter space of the models and thus
data demand.

Furthermore, the heterogeneous physiographic factors co-
evolve and covary (Troch et al., 2013) with complicated
causal and non-causal connections (Faghmous and Kumar,
2014). The relationships of soil, terrain, and vegetation are
further conditioned by geologic and climate history and of-
ten do not transfer to other regions (Thompson et al., 2006).
Consequently, training with insufficient data may result in
overfitted data-driven models or many alternative DL mod-
els that cannot be rejected. On the flip side, such complexity
due to co-evolution also precludes a reductionist approach
where all or most of these relationships are clearly described
in fundamental laws.

Hydrologic problems fit poorly into the template of prob-
lems for which standard network structures (Sect. 3.2 in
Shen18) are designed, i.e., pure image recognition, time-
series prediction problems, or a mixture of both. For ex-
ample, catchment hydrologic problems are characterized by
both spatially heterogeneous but temporally static attributes
(topography and hydrogeology) and temporal (atmospheric
forcing) dimensions. Such input dimensions are not effi-

ciently represented by typical input dimensions of LSTM or
CNN.

Because large and diverse datasets are needed for DL ap-
plication, access to properly pre-processed and formatted
datasets presents practical challenges. The steps of data com-
pilation, pre-processing, and formatting often occupy too
much time for researchers. Many of the processing tasks
for images cannot be handled by individual research groups.
Compared to the DL communities in AI and chemistry, etc.,
the DL learning community in hydrology is not sufficiently
coordinated, resulting in the significant waste of effort and
“reinvention of wheels”.

Deep generative models such as GANs can be used for the
stochastic generation of natural textures. This capability has
recently led to methodological advances in subsurface hy-
drology (Laloy et al., 2017, 2018; Mosser et al., 2017) where
the ability to efficiently and accurately simulate complicated
geologic structures with given (non-Gaussian) geostatistical
properties is of paramount importance for the uncertainty
quantification of subsurface flow and transport models. How-
ever, amongst other directions for future research, more work
is needed to (i) generate the complete range of structural
complexity observed in geologic layers, (ii) deal efficiently
with large 3-D domains, and (iii) account for various types
of direct (e.g., observed geologic facies at a given location,
mean property value over a specific area, etc.) and indirect
(e.g., measured hydrologic state variables to be used within
an inverse modeling procedure) conditioning data in the sim-
ulation.

4 A community roadmap toward DL-powered
scientific advances in hydrology

Despite the challenges articulated above, here we propose a
community roadmap for advancing hydrologic sciences us-
ing DL (Fig. 4). A well-coordinated community is much
more efficient in resolving problems, as we have seen in
other scientific endeavours. As Montanari et al. (2013) noted,
“future science must be based on an interdisciplinary ap-
proach” and “the research challenges in hydrology for the
next 10 years should be tackled through a collective ef-
fort”. We see that several steps are crucial in this roadmap:
the integration of physical knowledge, process-based models
(PBMs), and DL; using DL to infer unknown quantities; uti-
lizing community approaches in sharing and accessing data;
open and transparent model competitions; baseline models
and visualization packages; and an education program that
introduces data-driven methods at various levels.

4.1 Integrating physical knowledge, process-based
models, and DL models

To address the challenge of data limitations (data quantity),
we envision that a critical and necessary step is to more
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Figure 4. A roadmap toward DL-powered scientific discovery in
hydrologic science. Data availability can be increased by (green ar-
rows) collecting and compiling existing data, incorporating novel
data sources such as those collected by citizen scientists, remote
sensing, and modeling datasets. DL can be employed to predict data
that are currently difficult to observe. The modeling competitions
and the integration between PBM and DL will build an important
shared computing and analytic infrastructure, which together with
data sources, supports a wide range of hydrologic applications. In-
terpretive methods should be attempted to extract knowledge from
trained deep networks (orange arrows). Underpinning these activi-
ties is the enhanced, community-based educational program for ma-
chine learning in hydrology (purple arrows). However, these activi-
ties, especially the modeling competitions, might in turn feed back
into the educational activity.

organically integrate hydrologic knowledge, process-based
models, and DL. Process-based models, as they are derived
from underlying physics, require less data for calibration
than data-driven models. They can provide estimates for spa-
tial and temporal data gaps and unobserved hydrologic pro-
cesses. Well-constructed PBMs should also be able to rep-
resent temporal changes and trends. However, because data-
driven models directly target observations, these models may
have better performance in locations and periods where data
are available. Also, as discussed earlier, data-driven models
are less prone to a priori model structural error than PBMs.
We should maximally utilize the best features of both types
of models.

There will be a diversity of approaches with which PBMs
and data-driven models could be combined. Karpatne et
al. (2017) compiled a list of approaches of what they col-
lectively call “theory-guided data science”, which include
(i) using knowledge to design data-driven models; (ii) using
knowledge to initialize network states; (iii) using physical
knowledge to construct priors to constrain the data-driven
models; (iv) using knowledge-based constrained optimiza-
tion (although this may be difficult to implement in prac-
tice); (v) using theory as regularization terms for the data-
driven model, which will force the model to respect these
constraints; and (vi) learning hybrid models, where the data-
driven method is used as surrogate for certain parts of the

physical model. One may also impose multiple learning ob-
jectives based on the knowledge of the problem.

There are a multitude of potential approaches, and this
list can be further expanded to accommodate various ob-
jectives. First, we can focus on PBM errors (the difference
between PBM simulation and observations). Non-deep ma-
chine learning has already shown promise in correcting PBM
errors. Abramowitz et al. (2006) developed an ANN to pre-
dict the error in net ecosystem exchange from a land sur-
face model and achieved a 95 % reduction in annual error.
More importantly, an ANN trained to correct the error at one
biome corrects the PBM in another biome with a different
temperature regime (Abramowitz et al., 2007). In the con-
text of weather forecasts, machine learning methods were
used to learn the patterns from past forecasting errors (Delle
Monache et al., 2011, 2013), leading to a 20 % improvement
in performance for events of similar characteristics (Junk et
al., 2015). Their results suggest that PBMs make structural
errors that are independent of the state-variable regimes, al-
though there is a lack of theories to guide the separation
of error types. We envision that PBMs can better resolve
the impacts of regime changes, while DL can better cap-
ture state-independent error patterns and carry out mild state-
dependent extrapolations. A co-benefit of modeling the PBM
error is that insights are gained about the PBM. Using inter-
rogative methods to reverse engineer what DL has learned
about PBM error provides possible avenues for improving
the underlying PBM processes.

Second, PBMs can augment input data for DL models.
PBMs can be used to increase supervising data for DLs,
for example, for climate or land-use scenarios that have
not existed presently and to augment existing data. Given
model structural uncertainty (uncertainty with hydrologic
processes), frameworks like the Structure for Unifying Mul-
tiple Modeling Alternatives (Clark et al., 2015) and auto-
mated model building (Marshall, 2017) could be employed to
generate a range of outputs. Furthermore, with limited data,
we may not be able to reject alternative DL models that could
generate unphysical or unrealistic outputs. Providing PBM
simulations as either training data or regularization terms can
help nudge DL models to generate physically meaningful
outputs. The extent to which errors in PBM model results
affect DL outcomes remains to be explored. A theoretical
framework is lacking for separately estimating aleatory un-
certainty (resulting from data noise), epistemic uncertainty
(resulting from PBM error and training data paucity), and
uncertainty due to a regime shift. The advantages and disad-
vantages of various approaches could be systematically and
efficiently evaluated in a community-coordinated fashion.

4.2 Multifaceted, community-coordinated hydrologic
modeling competitions

There are many possible approaches and many alternative
model structures for using DL to make hydrologic predic-
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tions and to provide insight into hydrologic processes. In
light of these challenges, we argue that open, fast, and stan-
dardized competitions are an effective way of accelerating
the progress. The competitions can evaluate the models not
only in terms of predictive performance but also in the attain-
ment of understanding.

The impacts of competitions are best evidenced in the
community-coordinated AI challenges, which use a stan-
dardized set of problems. These competitions have strongly
propelled the advances in AI. Some have argued that the con-
tributions of the ImageNet dataset and the competition may
be more significant than the winning algorithms arising from
these contests (Gershgorn, 2017). New methods can be eval-
uated objectively and disseminated rapidly through compe-
titions. Because the problems are standardized, they remove
biases due to data sources and pre-processing. The commu-
nity can quickly learn the advantages and disadvantages of
alternative model design through these competitions, which
also encourages reproducibility.

We envision multifaceted hydrologic modeling competi-
tions where various models ranging from process-based ones
to DL ones are evaluated and compared. The coordinators
can, for example, provide a set of standard atmospheric forc-
ings, landscape characteristics, and observed variables and
provide targeted questions that participants must address.
Importantly, the evaluation criteria should include not only
performance-type criteria such as model efficiency coeffi-
cients and bias but also qualitative and explanatory ones,
such as explanations for control variables and model errors.
Overly simplified or poorly constructed models may provide
more accessible explanations, but they might be misleading
because the models may be overfitted to a given situation.
Their simplicity may also constrain their ability to digest
large datasets as a way of reducing uncertainty. Multifaceted
competitions allow us to also identify the “Pareto front” of
interpretability and performance, and they help rule out false
explanations. The objective of the competition is not only to
seek the best simulation performance but also those methods
that offer deeper insights into hydrologic processes.

Another important value of competitions is that organiz-
ers will provide a standard input dataset and well-defined
tasks, which the entire community can leverage. A sub-
stantial amount of effort is required to establish such a
dataset, which may only be possible under a specifically
designed project. Moreover, open competitions in the com-
puter science field have produced well-known models such
as AlexNet (Krizhevsky et al., 2012), GoogLeNet (Szegedy
et al., 2015), etc. These models serve as benchmarks and
quick entry points for others. They can greatly improve re-
producibility and the effectiveness of comparisons.

4.3 Community-shared resources and broader
involvement

A useful approach in addressing the major obstacle of data
limitation is to increase our data repositories and open ac-
cess to existing data. The value of data can be greatly en-
hanced by centralized data compilations, a task many institu-
tions are already undertaking. For example, the Consortium
of Universities for the Advancement of Hydrologic Science,
Inc. (CUAHSI) provides access to large amounts of hydro-
logic data (CUAHSI, 2018a). In another example, in 2015,
a project called Collaborative Research Actions (Endo et al.,
2015) was proposed in the Belmont Forum, which is a group
of the world’s major and emerging funders of global envi-
ronmental change research. Many scientists from different
countries join the project and focus on the same issue, the
food–energy–water nexus. They shared their data (heteroge-
neous data) and research results from different regions.

ML has already been used to create useful hydrologic
datasets such as soil properties (Chaney et al., 2016; Schaap
et al., 2001), land cover (Helber et al., 2017; Zhu et al.,
2017), and cyclones (Liu et al., 2016). We envision that there
will continue to be significant progress in this regard, and
the key to success will be the availability of ground-truth
datasets. Using data sharing standards will advance data shar-
ing across domains (WaterML2, 2018). Providing access to
data through web services such as those used by CUAHSI
negates the problem of storing data in a single location and
enhances the ability for them to be discovered. Data brokers
also provide more channels to share experiences, scholarly
discussions, and debates along with the generation of data.

An important area where DL is expected to deliver sig-
nificant value is the analysis of big and sub-research-quality
data such as those collected by citizen scientists. Many as-
pects of the water cycle are directly accessible by everyone.
Citizen scientists already gather data about precipitation (Co-
CoRaHS, 2018), temperature, humidity, soil moisture, river
stage (CrowdHydrology, 2018), and potentially groundwater
levels. These quantities can be measured using inexpensive
instruments such as cameras, pressure gauges, and moisture
sensors. Volunteer scientists can also be solicited for data in
places where such data can best reduce the uncertainty of
the DL model, as in a framework called active learning (Set-
tles, 2012). Social data have been used to help monitor flood
inundation (Sadler et al., 2018; Wang et al., 2018). Crowd-
sourced data have played roles in DL research, where a large
but noisy dataset was argued to be more useful than a much
smaller but well-curated dataset (Huang et al., 2016; Izadinia
et al., 2015). Even though there are problems related to data
quality, these can be overcome using AI approaches. An im-
portant co-benefit of involving citizen scientists is education
and outreach to the public. The active engagement is much
more effective when the public has a stake in the research
outcomes.
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4.4 Education

A major barrier to realizing the benefits of data science and
DL lies in our undergraduate and graduate curricula. Lit-
tle in hydrologists’ standard curriculum prepares them for
a future with substantially more data-driven science. Sta-
tistical courses often do not cover machine learning basics,
while data mining courses offered by computer science de-
partments lack the connections to the water discipline. Given
the interdisciplinary nature of hydrology, it has been long
recognized that it takes a community to raise a hydrologist
(Merwade and Ruddell, 2012; Wagener et al., 2012). We pro-
pose a concerted effort by current hydrologic machine learn-
ing researchers, along with participation from computer sci-
entists, to pool and share educational content. Such efforts
will form the basis of a hydrologic data mining curriculum
and leverage the wit of the community. Collaborations may
form through either grassroots collaborations or institution-
ally supported education projects (e.g., CUAHSI, 2018b).
The open competitions would be a great source of education
materials. A diversity of models that have been evaluated and
contrasted help clarify the pros and cons of different meth-
ods. Shared datasets, DL algorithms, and data pre-processing
software can be leveraged in classrooms.

As with the design of any education effort, it is impor-
tant to consider inclusiveness and diversity. Especially for
hydrologic DL, the source field of AI appears to have an
extremely poor track record of gender balance (Simonite,
2018). The reason for such an imbalance could be rooted in
introductory computer science classes, undergraduate curric-
ula, and social stereotypes. Research has found that the intro-
ductory computer science classes, especially those taken by
non-majors, are instrumental in developing a desire to stay in
the field (Lehman, 2017). In addition, the portrayal of gender
stereotypes regarding computing and the increase in weed-
out courses (Aspray, 2016) have discouraged women stu-
dents in computer science (Sax et al., 2017). To counter such
negative impacts, the introductory courses in the curriculum
need to assume little prior programming experiences. Special
attention must be paid by the educators to shatter the stereo-
types. On the other hand, the richness of natural beauty in hy-
drology and the connection between data and the real world
may be employed to help bridge the gender gap.

5 Concluding remarks

In this opinion paper, we argue that hydrologic scientists
ought to give consideration to a research avenue that com-
plements traditional approaches wherein DL-powered data
mining is used to generate hypotheses, predictions, and in-
sights. Although there may have been strong reservations
toward black-box approaches in the past, recent efforts and
advances have been made in the interpretation and under-
standing of deep learning networks. The black-box percep-

tion of ML in hydrology is perhaps a self-reinforcing curse
on this juvenile field, as a rejection of the research avenue
based on this perception will, in turn, jeopardize the develop-
ment of more transparent algorithms. Progress in hydrology
and other disciplines show that there is substantial promise in
incorporating DL into hydrologists’ toolbox. However, chal-
lenges such as data limitation and model variability demand
a community-coordinated approach.

We have also argued for open hydrologic competitions that
emphasize both performance and the ability to explain. These
competitions will greatly improve the growth of the field as
a whole. They serve as valuable “organizing events”, where
different threads in algorithm development, model evalua-
tions and comparisons, reproducibility tests, dataset compila-
tion, resource sharing, and community organization all come
to a convergence to spur growth in the field.
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