Articles | Volume 22, issue 11
https://doi.org/10.5194/hess-22-5697-2018
https://doi.org/10.5194/hess-22-5697-2018
Research article
 | 
05 Nov 2018
Research article |  | 05 Nov 2018

Seasonal drought predictability and forecast skill in the semi-arid endorheic Heihe River basin in northwestern China

Feng Ma, Lifeng Luo, Aizhong Ye, and Qingyun Duan

Related authors

Comparing quantile regression forest and mixture density long short-term memory models for probabilistic post-processing of satellite precipitation-driven streamflow simulations
Yuhang Zhang, Aizhong Ye, Bita Analui, Phu Nguyen, Soroosh Sorooshian, Kuolin Hsu, and Yuxuan Wang
Hydrol. Earth Syst. Sci., 27, 4529–4550, https://doi.org/10.5194/hess-27-4529-2023,https://doi.org/10.5194/hess-27-4529-2023, 2023
Short summary
Hydrological response to climate change and human activities in the Three-River Source Region
Ting Su, Chiyuan Miao, Qingyun Duan, Jiaojiao Gou, Xiaoying Guo, and Xi Zhao
Hydrol. Earth Syst. Sci., 27, 1477–1492, https://doi.org/10.5194/hess-27-1477-2023,https://doi.org/10.5194/hess-27-1477-2023, 2023
Short summary
Nitrogen limitation information retrieved from data assimilation
Song Wang, Carlos Sierra, Yiqi Luo, Jinsong Wang, Weinan Chen, Yahai Zhang, Aizhong Ye, and Shuli Niu
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-33,https://doi.org/10.5194/bg-2023-33, 2023
Manuscript not accepted for further review
Short summary
Evaluation of random forests for short-term daily streamflow forecasting in rainfall- and snowmelt-driven watersheds
Leo Triet Pham, Lifeng Luo, and Andrew Finley
Hydrol. Earth Syst. Sci., 25, 2997–3015, https://doi.org/10.5194/hess-25-2997-2021,https://doi.org/10.5194/hess-25-2997-2021, 2021
Short summary
An experimental seasonal hydrological forecasting system over the Yellow River basin – Part 1: Understanding the role of initial hydrological conditions
Xing Yuan, Feng Ma, Linying Wang, Ziyan Zheng, Zhuguo Ma, Aizhong Ye, and Shaoming Peng
Hydrol. Earth Syst. Sci., 20, 2437–2451, https://doi.org/10.5194/hess-20-2437-2016,https://doi.org/10.5194/hess-20-2437-2016, 2016
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Understanding the influence of “hot” models in climate impact studies: a hydrological perspective
Mehrad Rahimpour Asenjan, Francois Brissette, Jean-Luc Martel, and Richard Arsenault
Hydrol. Earth Syst. Sci., 27, 4355–4367, https://doi.org/10.5194/hess-27-4355-2023,https://doi.org/10.5194/hess-27-4355-2023, 2023
Short summary
A semi-parametric hourly space–time weather generator
Ross Pidoto and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 27, 3957–3975, https://doi.org/10.5194/hess-27-3957-2023,https://doi.org/10.5194/hess-27-3957-2023, 2023
Short summary
A principal-component-based strategy for regionalisation of precipitation intensity–duration–frequency (IDF) statistics
Kajsa Maria Parding, Rasmus Emil Benestad, Anita Verpe Dyrrdal, and Julia Lutz
Hydrol. Earth Syst. Sci., 27, 3719–3732, https://doi.org/10.5194/hess-27-3719-2023,https://doi.org/10.5194/hess-27-3719-2023, 2023
Short summary
Accounting for precipitation asymmetry in a multiplicative random cascade disaggregation model
Kaltrina Maloku, Benoit Hingray, and Guillaume Evin
Hydrol. Earth Syst. Sci., 27, 3643–3661, https://doi.org/10.5194/hess-27-3643-2023,https://doi.org/10.5194/hess-27-3643-2023, 2023
Short summary
Predicting extreme sub-hourly precipitation intensification based on temperature shifts
Francesco Marra, Marika Koukoula, Antonio Canale, and Nadav Peleg
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-226,https://doi.org/10.5194/hess-2023-226, 2023
Revised manuscript accepted for HESS
Short summary

Cited articles

Barker, L. J., Hannaford, J., Chiverton, A., and Svensson, C.: From meteorological to hydrological drought using standardised indicators, Hydrol. Earth Syst. Sci., 20, 2483–2505, 2016. 
Becker, E., Van Den Dool, H., and Zhang, Q.: Predictability and forecast skill in NMME, J. Climate, 27, 5891–5906, 2014. 
Below, R., Grover-Kopec, E., and Dilley, M.: Documenting drought-related disasters. A global reassessment, J. Environ. Dev., 16, 328–344, https://doi.org/10.1177/1070496507306222, 2007. 
Farahmand, A. and AghaKouchak, A.: A generalized framework for deriving nonparametric standardized drought indicators, Adv. Water Resour., 76, 140–145, https://doi.org/10.1016/j.advwatres.2014.11.012, 2015. 
Gringorten, II.: A plotting rule for extreme probability paper, J. Geophys. Res., 68, 813–814, 1963. 
Download
Short summary
Predicting meteorological droughts more than 2 months in advance became difficult due to low predictability, leading to weak skill for hydrological droughts in wet seasons. Hydrological drought forecasts showed skills up to 3–6 lead months due to the memory of initial hydrologic conditions in dry seasons. Human activities have increased hydrological predictability during wet seasons in the MHRB. This fills gaps in understanding drought and predictability predictions in endorheic and arid basins.