Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
HESS | Articles | Volume 22, issue 1
Hydrol. Earth Syst. Sci., 22, 595–610, 2018
https://doi.org/10.5194/hess-22-595-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 22, 595–610, 2018
https://doi.org/10.5194/hess-22-595-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 24 Jan 2018

Research article | 24 Jan 2018

Spatial characterization of long-term hydrological change in the Arkavathy watershed adjacent to Bangalore, India

Gopal Penny et al.
Related authors  
Proximate and underlying drivers of socio-hydrologic change in the upper Arkavathy watershed, India
Veena Srinivasan, Gopal Penny, Sharachchandra Lele, Bejoy K. Thomas, and Sally Thompson
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-543,https://doi.org/10.5194/hess-2017-543, 2017
Revised manuscript has not been submitted
Short summary
Why is the Arkavathy River drying? A multiple-hypothesis approach in a data-scarce region
V. Srinivasan, S. Thompson, K. Madhyastha, G. Penny, K. Jeremiah, and S. Lele
Hydrol. Earth Syst. Sci., 19, 1905–1917, https://doi.org/10.5194/hess-19-1905-2015,https://doi.org/10.5194/hess-19-1905-2015, 2015
Short summary
Related subject area  
Subject: Catchment hydrology | Techniques and Approaches: Remote Sensing and GIS
Using MODIS estimates of fractional snow cover area to improve streamflow forecasts in interior Alaska
Katrina E. Bennett, Jessica E. Cherry, Ben Balk, and Scott Lindsey
Hydrol. Earth Syst. Sci., 23, 2439–2459, https://doi.org/10.5194/hess-23-2439-2019,https://doi.org/10.5194/hess-23-2439-2019, 2019
Short summary
Informing a hydrological model of the Ogooué with multi-mission remote sensing data
Cecile M. M. Kittel, Karina Nielsen, Christian Tøttrup, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 22, 1453–1472, https://doi.org/10.5194/hess-22-1453-2018,https://doi.org/10.5194/hess-22-1453-2018, 2018
Short summary
Spatial pattern evaluation of a calibrated national hydrological model – a remote-sensing-based diagnostic approach
Gorka Mendiguren, Julian Koch, and Simon Stisen
Hydrol. Earth Syst. Sci., 21, 5987–6005, https://doi.org/10.5194/hess-21-5987-2017,https://doi.org/10.5194/hess-21-5987-2017, 2017
Short summary
A method to employ the spatial organization of catchments into semi-distributed rainfall–runoff models
Henning Oppel and Andreas Schumann
Hydrol. Earth Syst. Sci., 21, 4259–4282, https://doi.org/10.5194/hess-21-4259-2017,https://doi.org/10.5194/hess-21-4259-2017, 2017
Short summary
Multi-source hydrological soil moisture state estimation using data fusion optimisation
Lu Zhuo and Dawei Han
Hydrol. Earth Syst. Sci., 21, 3267–3285, https://doi.org/10.5194/hess-21-3267-2017,https://doi.org/10.5194/hess-21-3267-2017, 2017
Short summary
Cited articles  
Anand, P. B.: Water and Identity: An analysis of the Cauvery River water dispute, BCID Research Paper 3, Bradford Centre for International Development, University of Bradford, Bradford, UK, 1–41, http://hdl.handle.net/10454/2893 (last access: January 2018), 2004. a
ATREE, Srinivasan, V., and Lele, S.: Forum with traditional watermen (Neerghantis) in the upper Arkavathy sub-basin, 2015. a
Batchelor, C., Rama Mohan Rao, M., and Manohar Rao, S.: Watershed development: A solution to water shortages in semi-arid India or part of the problem, in: Land Use and Water Resources Research, 23 December 2015, Doddaballapura, KA, India, 1–10, http://www.rainfedfarming.org/documents/Groundwater/luwrrpap.pdf (last access: January 2018), 2003. a
Bivand, R. and Rundel, C.: rgeos: Interface to Geometry Engine – Open Source (GEOS), R package version 0.3-22, https://CRAN.R-project.org/package=rgeos (last access: January 2018), 2016. a
Bivand, R., Keitt, T., and Rowlingson, B.: rgdal: Bindings for the Geospatial Data Abstraction Library, R package version 1.0-4, https://CRAN.R-project.org/package=rgdal (last access: January 2018), 2016. a
Publications Copernicus
Download
Short summary
Water resources in the Arkavathy watershed in southern India are changing due to human modification of the landscape, including changing agricultural practices and urbanization. We analyze surface water resources in man-made lakes in satellite imagery over a period of 4 decades and find drying in the northern part of the watershed (characterized by heavy agriculture) and wetting downstream of urban areas. Drying in the watershed is associated with groundwater-irrigated agriculture.
Water resources in the Arkavathy watershed in southern India are changing due to human...
Citation