Apurv, T., Sivapalan, M., and Cai, X: Understanding the Role of Climate
Characteristics in Drought Propagation, Water Resour. Res., 53, 9304–9329,
https://doi.org/10.1002/2017WR021445, 2017.
Asarian, J. E. and Walker, J. D.: Long term trends in streamflow and
precipitation in northwest California and southwest Oregon, 1953–2012, J.
Am.
Water. Resour. As., 52, 241–261, https://doi.org/10.1111/1752-1688.12381, 2016.
Barker, L. J., Hannaford, J., Chiverton, A., and Svensson, C.: From meteorological to hydrological drought
using standardised indicators, Hydrol. Earth Syst. Sci., 20, 2483–2505, https://doi.org/10.5194/hess-20-2483-2016, 2016.
Bayazit, M. and Önöz, B.: To prewhiten or not to prewhiten in trend
analysis? Hydrolog. Sci. J., 52, 611–624, https://doi.org/10.1623/hysj.52.4.611, 2007.
BGR and SGD: Bundesanstalt für Geowissenschaften und Rohstoffe and
Staatliche Geologische Dienste: Hydrogeologische Übersichtskarte von
Deutschland 1:200.000, Oberer Grundwasserleiter (HÜK200 OGWL), Digitaler
Datenbestand, Version 3.0. – Hannover, 2016.
Bloomfield, J. P. and Marchant, B. P.: Analysis of groundwater drought building on the standardised precipitation
index approach, Hydrol. Earth Syst. Sci., 17, 4769–4787, https://doi.org/10.5194/hess-17-4769-2013, 2013.
Bloomfield, J. P., Marchant, B. P., Bricker, S. H., and Morgan, R. B.: Regional analysis of groundwater droughts
using hydrograph classification, Hydrol. Earth Syst. Sci., 19, 4327–4344, https://doi.org/10.5194/hess-19-4327-2015, 2015.
Bundesanstalt für Geowissenschaften und Rohstoffe: HÜK200 – Hydrogeologische
Übersichtskarte von Deutschland 1:200 000, available at: https://www.bgr.bund.de/DE/Themen/Wasser/Projekte/laufend/Beratung/Huek200/huek200_projektbeschr.html,
last access: 28 November 2018.
Brunner, P., Cook, P. G., and Simmons, C. T.: Disconnected Surface Water and
Groundwater: From Theory to Practice, Ground Water, 49, 460–467, https://doi.org/10.1111/j.1745-6584.2010.00752.x, 2011.
Brutsaert, W.: Long-term groundwater storage trends estimated from
streamflow records: Climatic perspective, Water Resour. Res., 44, W02409, https://doi.org/10.1029/2007wr006518, 2008.
Brutsaert, W.: Annual drought flow and groundwater storage trends in the
eastern half of the United States during the past two-third century, Theor.
Appl. Climatol., 100, 93–103, https://doi.org/10.1007/s00704-009-0180-3, 2010.
Douglas, E. M., Vogel, R. M., and Kroll, C. N.: Trends in floods and low
flows in the United States: impact of spatial correlation, J. Hydrol., 240,
90–105, https://doi.org/10.1016/s0022-1694(00)00336-x, 2000.
EC: Communication from the Commission to the European Parliament and the
Council addressing the challenge of water scarcity and droughts in the
European Union, Commission of the European Communities, COM(2007), 414
final, Brussels, 2007.
ECA and D: European Climate Assessment & Dataset, available at: https://www.ecad.eu/, last access: 28 November
2018.
Eckhardt, K.: How to construct recursive digital filters for baseflow
separation, Hydrol. Process., 19, 507–515, https://doi.org/10.1002/hyp.5675, 2005.
Eltahir, E. A. B. and Yeh, P.: On the asymmetric response of aquifer water
level to floods and droughts in Illinois, Water Resour. Res., 35, 1199–1217,
https://doi.org/10.1029/1998wr900071, 1999.
European Environment Agency: Digital Elevation Model over Europe (EU-DEM),
available at: https://www.eea.europa.eu/data-and-maps/data/eu-dem (last access: 28 November 2018), 2013.
Fendeková, M. and Fendek, M.: Groundwater drought in the Nitra river
basin-identification and classification, J. Hydrol. Hydromech., 60, 185–193,
2012.
Fiorillo, F. and Guadagno, F. M.: Long karst spring discharge time series
and droughts occurrence in Southern Italy, Environ. Earth Sci., 65,
2273–2283, 2012.
Forzieri, G., Feyen, L., Rojas, R., Flörke, M., Wimmer, F., and Bianchi, A.: Ensemble projections of future
streamflow droughts in Europe, Hydrol. Earth Syst. Sci., 18, 85–108, https://doi.org/10.5194/hess-18-85-2014, 2014.
Giuntoli, I., Renard, B., Vidal, J. P., and Bard, A.: Low flows in France
and their relationship to large-scale climate indices, J. Hydrol., 482,
105–118, https://doi.org/10.1016/j.jhydrol.2012.12.038, 2013.
Gleeson, T., Moosdorf, N. Hartmann, J., and van Beek L. P. H.: A glimpse
beneath earth's surface: Global HYdrogeology MaPS (GLHYMPS) of permeability
and porosity, Geophys. Res. Lett., 41, 3891–3898, https://doi.org/10.1002/2014GL059856,
2014.
Gosling, S. N., Zaherpour, J., Mount, N. J., Hattermann, F. F., Dankers, R.,
Arheimer, B., Breuer, L., Ding, J., Haddeland, I., Kumar, R., Kundu, D.,
Liu, J., Van Griensven, A., Veldkamp, T. I. E., Vetter, T., Wang, X., and
Zhang, X. X.: A comparison of changes in river runoff from multiple global
and catchment-scale hydrological models under global warming scenarios of 1
degrees C, 2 degrees C and 3 degrees C, Clim. Change, 141, 577–595, https://doi.org/10.1007/s10584-016-1773-3, 2017.
Green, T. R., Taniguchi, M., Kooi, H., Gurdak, J. J., Allen, D. M., Hiscock,
K. M., Treidel, H., and Aureli, A.: Beneath the surface of global change:
Impacts of climate change on groundwater, J. Hydrol., 405, 532–560,
https://doi.org/10.1016/j.jhydrol.2011.05.002, 2011.
Haas, J. C. and Birk, S.: Characterizing the spatiotemporal variability of groundwater levels of alluvial
aquifers in different settings using drought indices, Hydrol. Earth Syst. Sci., 21, 2421–2448, https://doi.org/10.5194/hess-21-2421-2017, 2017.
Hannaford, J. and Buys, G.: Trends in seasonal river flow regimes in the
UK, J. Hydrol., 475, 158–174, https://doi.org/10.1016/j.jhydrol.2012.09.044, 2012.
Hannaford, J., Buys, G., Stahl, K., and Tallaksen, L. M.: The influence of decadal-scale variability on
trends in long European streamflow records, Hydrol. Earth Syst. Sci., 17, 2717–2733, https://doi.org/10.5194/hess-17-2717-2013, 2013.
Haslinger, K., Koffler, D., Schoner, W., and Laaha, G.: Exploring the link
between meteorological drought and streamflow: Effects of climate- catchment
interaction, Water Resour. Res., 50, 2468–2487, https://doi.org/10.1002/2013wr015051,
2014.
Haylock, M. R., Hofstra, N., Tank, A., Klok, E. J., Jones, P. D., and New,
M.: A European daily high-resolution gridded data set of surface temperature
and precipitation for 1950–2006, J. Geophys. Res.-Atmos., 113, D20119, https://doi.org/10.1029/2008jd010201, 2008.
Hellwig, J., Stahl, K., Ziese, M., and Becker, A.: The impact of the
resolution of meteorological data sets on catchment-scale precipitation and
drought studies, Int. J. Climatol., 38, 3069–3081, https://doi.org/10.1002/joc.5483, 2018.
Heudorfer, B. and Stahl, K: Comparison of different threshold level methods
for drought propagation analysis in Germany, Hydrol. Res., 48, 1311–1326, https://doi.org/10.2166/nh.2016.258, 2017.
Hübener, H., Bülow, K., Fooken, C., Früh, B, Hoffmann, P,
Höpp, S., Keuler, K., Menz, C., Mohr, V., Radtke K., Ramthun, H.,
Spekat, A., Steger, C., Toussaint, F., Warrach-Sagi, K., and Woldt, M.
ReKliEs-De, Ergebnisbericht, HLNUG, Hessisches Landesamt für
Naturschutz, Umwelt und Geologie, 2017.
Jacob, D., Bülow, K., Kotova, L., Moseley, C., Petersen, J., and Rechid,
D.: Regionale Klimaprojektionen für Europa und Deutschland: Ensemble
Simulationen für die Klimafolgenforschung, MPI für Meteorologie,
Climate Service Center, 2012.
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer,
L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G.,
Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A.,
Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N.,
Kotlarski, S., Kriegsmann, A., Martin, E., Van Meijgaard, E., Moseley, C.,
Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D.,
Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C.,
Valentini, R., Vautard, R., Weber, B., and Yiou, P.: EURO-CORDEX: new
high-resolution climate change projections for European impact research, Reg. Environ. Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014.
Kendall, M. G.: Rank correlation methods, London: Griffin, 160 pp., 1948.
Koffler, D., Gauster, T., and Laaha, G.: lfstat: Calculation of Low Flow
Statistics for Daily Stream Flow Data. R package version 0.9.4.
available at: https://CRAN.R-project.org/package=lfstat (last access: 28 November 2018),
2016.
Kulkarni, A. and von Storch, H.: Monte Carlo experiments on the effect of
serial correlation on the Mann-Kendall test of trend, Meteorol. Z., 4, 82–85,
1995.
Kopp, B., Baumeister, C., Gudera, T., Hergesell, J., Morhard, A., and
Neumann, J.: Entwicklung von Bodenwasserhaushalt und Grundwasserneubildung
in Baden-Württemberg, Bayern, Rheinland-Pfalz und Hessen von 1951 bis
2015, Hydrol. Wasserbewirts., 62, 62–76, https://doi.org/10.5675/HyWa_2018,2_1, 2018.
Kumar, R., Musuuza, J. L., Van Loon, A. F., Teuling, A. J., Barthel, R., Ten Broek, J., Mai, J., Samaniego, L., and
Attinger, S.: Multiscale evaluation of the Standardized Precipitation Index as a groundwater drought indicator,
Hydrol. Earth Syst. Sci., 20, 1117–1131, https://doi.org/10.5194/hess-20-1117-2016, 2016.
Laaha, G., Gauster, T., Tallaksen, L. M., Vidal, J.-P., Stahl, K., Prudhomme, C., Heudorfer, B., Vlnas, R., Ionita, M.,
Van Lanen, H. A. J., Adler, M.-J., Caillouet, L., Delus, C., Fendekova, M., Gailliez, S., Hannaford, J., Kingston, D.,
Van Loon, A. F., Mediero, L., Osuch, M., Romanowicz, R., Sauquet, E., Stagge, J. H., and Wong, W. K.: The European 2015
drought from a hydrological perspective, Hydrol. Earth Syst. Sci., 21, 3001–3024, https://doi.org/10.5194/hess-21-3001-2017, 2017.
Leelaruban, N., Padmanabhan, G., and Oduor, P.: Examining the Relationship
between Drought Indices and Groundwater Levels, Water, 9, 82, https://doi.org/10.3390/w9020082, 2017.
Li, B. and Rodell, M.: Evaluation of a model-based groundwater drought
indicator in the conterminous US, J. Hydrol., 526, 78–88, https://doi.org/10.1016/j.jhydrol.2014.09.027 2015.
Lins, H. F. and Slack, J. R.: Streamflow trends in the United States,
Geophys. Res. Lett., 26, 227–230, https://doi.org/10.1029/1998gl900291, 1999.
Lorenzo-Lacruz, J., Vicente-Serrano, S. M., López-Moreno, J. I.,
Morán-Tejeda, E., and Zabalza, J.: Recent trends in Iberian streamflows
(1945–2005), J. Hydrol., 414, 463–475, https://doi.org/10.1016/j.jhydrol.2011.11.023,
2012.
Lyne, V. and Hollick, M.: Stochastic time-variable rainfall-runoff
modelling, Paper presented at the Institute of Engineers Australia National
Conference, Perth, Australia, 1979.
Marx, A., Kumar, R., Thober, S., Rakovec, O., Wanders, N., Zink, M., Wood, E. F., Pan, M., Sheffield, J., and Samaniego, L.:
Climate change alters low flows in Europe under global warming of 1.5, 2, and 3 ∘C, Hydrol. Earth Syst. Sci., 22, 1017–1032,
https://doi.org/10.5194/hess-22-1017-2018, 2018.
McKee, T. B., Doesken, N., J., and Kleist, J.: The relationship of drought
frequency and duration to time scales. Eighth Conference on Applied
Climatology, Anaheim CA, 6, 1993.
Mei, Y. and Anagnostou, E. N.: A hydrograph separation method based on
information from rainfall and runoff records, J. Hydrol., 523, 636–649, https://doi.org/10.1016/j.jhydrol.2015.01.083, 2015.
Mishra, A. K. and Singh, V. P.: A review of drought concepts, J. Hydrol.,
391, 204–216, https://doi.org/10.1016/j.jhydrol.2010.07.012, 2010.
Nathan, R. J. and McMahon, T. A.: Evaluation of automated techniques for
base flow and recession analyses, Water Resour. Res., 26, 1465–1473, 1990.
Peters, E., Torfs, P., van Lanen, H. A. J., and Bier, G.: Propagation of
drought through groundwater – a new approach using linear reservoir theory,
Hydrol. Process., 17, 3023–3040, https://doi.org/10.1002/hyp.1274, 2003.
Peters, E., Bier, G., van Lanen, H. A. J., and Torfs, P.: Propagation and
spatial distribution of drought in a groundwater catchment, J. Hydrol., 321,
257–275, https://doi.org/10.1016/j.jhydrol.2005.08.004, 2006.
R Core Team: R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria, available at: https://www.R-project.org/
(last access: 28 November 2018), 2016.
Rennermalm, A. K., Wood, E. F., and Troy, T. J.: Observed changes in
pan-arctic cold-season minimum monthly river discharge, Clim. Dynam., 35,
923–939, https://doi.org/10.1007/s00382-009-0730-5, 2010.
Sheffield, J., Wood, E. F., and Roderick, M. L.: Little change in global
drought over the past 60 years, Nature, 491, 435–438, 2012.
Spinoni, J., Naumann, G., and Vogt, J. V.: Pan-European seasonal trends and
recent changes of drought frequency and severity, Global Planet. Change, 148,
113–130, https://doi.org/10.1016/j.gloplacha.2016.11.013, 2017.
Stahl, K., Hisdal, H., Hannaford, J., Tallaksen, L. M., van Lanen, H. A. J., Sauquet, E., Demuth, S., Fendekova, M.,
and Jódar, J.: Streamflow trends in Europe: evidence from a dataset of near-natural catchments,
Hydrol. Earth Syst. Sci., 14, 2367–2382, https://doi.org/10.5194/hess-14-2367-2010, 2010.
Stahl, K., Tallaksen, L. M., Hannaford, J., and van Lanen, H. A. J.: Filling the white space on maps of European runoff trends:
estimates from a multi-model ensemble,
Hydrol. Earth Syst. Sci., 16, 2035–2047, https://doi.org/10.5194/hess-16-2035-2012, 2012.
Staudinger, M., Stoelzle, M., Seeger, S., Seibert, J., Weiler, M., and
Stahl, K.: Catchment water storage variation with elevation, Hydrol. Process.,
31, 2000–2015, https://doi.org/10.1002/hyp.11158, 2017.
Stoelzle, M., Stahl, K., Morhard, A., and Weiler, M.: Streamflow sensitivity
to drought scenarios in catchments with different geology, Geophys. Res. Lett.,
41, 6174–6183, https://doi.org/10.1002/2014gl061344, 2014.
Tallaksen, L. M. and Stahl, K.: Spatial and temporal patterns of
large-scale droughts in Europe: Model dispersion and performance, Geophys.
Res. Lett., 41, 429–434, https://doi.org/10.1002/2013gl058573, 2014.
Tallaksen, L. M., Hisdal, H., and Van Lanen, H. A. J.: Space-time modelling
of catchment scale drought characteristics, J. Hydrol., 375, 363–372, https://doi.org/10.1016/j.jhydrol.2009.06.032, 2009.
Van Lanen, H. A. J., Laaha, G., Kingston, D. G., Gauster, T., Ionita, M.,
Vidal, J. P., Vlnas, R., Tallaksen, L. M., Stahl, K., Hannaford, J., Delus,
C., Fendekova, M., Mediero, L., Prudhomme, C., Rets, E., Romanowicz, R.,
Gailliez, S., Wong, W. K., Adler, M.-J., Blauhut, V., Caillouet, L.,
Chelcea, S., Frolova, N., Gudmundsson, L., Hanel, M., Haslinger, K.,
Kireeva, M., Osuch, M., Sauquet, E., Stagge, J. H., and Van Loon, A. F.:
Hydrology needed to manage droughts: the 2015 European case, Hydrol. Process.,
30, 3097–3104, https://doi.org/10.1002/hyp.10838, 2016.
Van Loon, A. F. and Van Lanen, H. A. J.: A process-based typology of hydrological drought,
Hydrol. Earth Syst. Sci., 16, 1915–1946, https://doi.org/10.5194/hess-16-1915-2012, 2012.
Van Loon, A. F., Kumar, R., and Mishra, V.: Testing the use of standardised indices and GRACE
satellite data to estimate the European 2015 groundwater drought in near-real time,
Hydrol. Earth Syst. Sci., 21, 1947–1971, https://doi.org/10.5194/hess-21-1947-2017, 2017.
Van Vliet, M. T. H., Donnelly, C., Stromback, L., Capell, R., and Ludwig,
F.: European scale climate information services for water use sectors, J.
Hydrol., 528, 503–513, https://doi.org/10.1016/j.jhydrol.2015.06.060, 2015.
WMO: World Meteorological Organization: Manual on Low-flow Estimation and
Prediction, Operational Hydrology Report No. 50, WMO-NO. 1029, 2008.
Yevjevich, V. M.: An objective approach to definitions and investigations of
continental hydrologic droughts, Hydrology Papers, 23, 1967.
Zebisch, M., Grothmann, T., Schröter, D., Hasse, C., Fritsch, U., and
Cramer, W.: Climate Change in Germany, Vulnerability and Adaptation of
climate sensitive Sectors, Environmental research of the federal ministry of
the environment, nature conservation and nuclear safety, Research Report
20141253, 2005.