Bennett, J. C., Wang, Q. J., Li, M., Robertson, D. E., and Schepen, A.:
Reliable long-range ensemble streamflow forecasts: Combining calibrated
climate forecasts with a conceptual runoff model and a staged error model,
Water Resour. Res., 52, 8238–8259, https://doi.org/10.1002/2016WR019193, 2016.

Bennett, J. C., Wang, Q. J., Robertson, D. E., Schepen, A., Li, M., and Michael, K.:
Assessment of an ensemble seasonal streamflow forecasting system for Australia, Hydrol.
Earth Syst. Sci., 21, 6007–6030, https://doi.org/10.5194/hess-21-6007-2017, 2017.

Bogner, K. and Kalas, M.: Error-correction methods and evaluation of an
ensemble based hydrological forecasting system for the Upper Danube
catchment, Atmos. Sci. Lett., 9, 95–102, https://doi.org/10.1002/asl.180, 2008.

Bourdin, D. R., Nipen, T. N., and Stull, R. B.: Reliable probabilistic
forecasts from an ensemble reservoir inflow forecasting system, Water
Resour. Res., 50, 3108–3130, https://doi.org/10.1002/2014WR015462, 2014.

Box, G. E. P. and Cox, D. R.: An analysis of transformations, J. R. Stat.
Soc. Ser. B, 211–252, https://doi.org/10.2307/2287791, 1964.

Brown, J. D., Wu, L., He, M., Regonda, S., Lee, H., and Seo, D. J.:
Verification of temperature, precipitation, and streamflow forecasts from
the NOAA/NWS Hydrologic Ensemble Forecast Service (HEFS): 1. Experimental
design and forcing verification, J. Hydrol., 519, 2869–2889,
https://doi.org/10.1016/j.jhydrol.2014.05.028, 2014.

Carpenter, T. M. and Georgakakos, K. P.: Assessment of Folsom lake response
to historical and potential future climate scenarios: 1. Forecasting, J.
Hydrol., 249, 148–175, https://doi.org/10.1016/S0022-1694(01)00417-6, 2001.

Carrillo, G., Troch, P. A., Sivapalan, M., Wagener, T., Harman, C.,
and Sawicz, K.: Catchment classification: hydrological analysis of catchment
behavior through process-based modeling along a climate gradient, Hydrol.
Earth Syst. Sci., 15, 3411–3430, https://doi.org/10.5194/hess-15-3411-2011, 2011.

Charles, A., Miles, E., Griesser, A., de Wit, R., Shelton, K., Cottrill, A.,
Spillman, C., Hendon, H., McIntosh, P., Nakaegawa, T., Atalifo, T., Prakash,
B., Seuseu, S., Nihmei, S., Church, J., Jones, D., and Kuleshov, Y.:
Dynamical Seasonal Prediction of Climate Extremes in the Pacific, in 20th
International Congress on Modelling and Simulation (Modsim2013), 2841–2847, 2013.

Clark, M. P., Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J. A., Gupta,
H. V., Wagener, T., and Hay, L. E.: Framework for Understanding Structural
Errors (FUSE): A modular framework to diagnose differences between
hydrological models, Water Resour. Res., 44, W00B02, https://doi.org/10.1029/2007WR006735,
2008.

Clark, M. P., Kavetski, D., and Fenicia, F.: Pursuing the method of multiple
working hypotheses for hydrological modeling, Water Resour. Res., 47,
W09301, https://doi.org/10.1029/2010WR009827, 2011.

Cloke, H., Pappenberger, F., Thielen, J., and Thiemig, V.: Operational
European Flood Forecasting, in Environmental Modelling, John
Wiley & Sons, Ltd., 415–434, 2013.

Crochemore, L., Ramos, M.-H., and Pappenberger, F.: Bias correcting precipitation
forecasts to improve the skill of seasonal streamflow forecasts, Hydrol. Earth Syst.
Sci., 20, 3601–3618, https://doi.org/10.5194/hess-20-3601-2016, 2016.

Dawid, A. P.: Present Position and Potential Developments: Some Personal
Views: Statistical theory: the prequential approach (with discussion), J. R.
Stat. Soc. Ser. A, 147, 278–292, https://doi.org/10.2307/2981683, 1984.

DeChant, C. M. and Moradkhani, H.: Improving the characterization of initial
condition for ensemble streamflow prediction using data assimilation, Hydrol.
Earth Syst. Sci., 15, 3399–3410, https://doi.org/10.5194/hess-15-3399-2011, 2011.

Demargne, J., Wu, L., Regonda, S. K., Brown, J. D., Lee, H., He, M., Seo, D.
J., Hartman, R., Herr, H. D., Fresch, M., Schaake, J., and Zhu, Y.: The
science of NOAA's operational hydrologic ensemble forecast service, B.
Am. Meteorol. Soc., 95, 79–98, https://doi.org/10.1175/BAMS-D-12-00081.1, 2014.

Evin, G., Thyer, M., Kavetski, D., McInerney, D., and Kuczera, G.: Comparison
of joint versus postprocessor approaches for hydrological uncertainty
estimation accounting for error autocorrelation and heteroscedasticity,
Water Resour. Res., 50, 2350–2375, https://doi.org/10.1002/2013WR014185, 2014.

Fenicia, F., Kavetski, D., and Savenije, H. H. G.: Elements of a flexible
approach for conceptual hydrological modeling: 1. Motivation and theoretical
development, Water Resour. Res., 47, 1–13, https://doi.org/10.1029/2010WR010174,
2011.

Gibbs, M. S., McInerney, D., Humphrey, G., Thyer, M. A., Maier, H. R., Dandy, G. C.,
and Kavetski, D.: State updating and calibration period selection to improve
dynamic monthly streamflow forecasts for an environmental flow management
application, Hydrol. Earth Syst. Sci., 22, 871–887, https://doi.org/10.5194/hess-22-871-2018, 2018.

Del Giudice, D., Honti, M., Scheidegger, A., Albert, C., Reichert, P., and Rieckermann, J.:
Improving uncertainty estimation in urban hydrological modeling by statistically
describing bias, Hydrol. Earth Syst. Sci., 17, 4209–4225, https://doi.org/10.5194/hess-17-4209-2013, 2013.

Gneiting, T., Raftery, A. E., Westveld, A. H., and Goldman, T.: Calibrated
Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum
CRPS Estimation, Mon. Weather Rev., 133, 1098–1118,
https://doi.org/10.1175/MWR2904.1, 2005.

Gneiting, T., Balabdaoui, F., and Raftery, A. E.: Probabilistic forecasts,
calibration and sharpness, J. R. Stat. Soc. Ser. B, 69, 243–268,
https://doi.org/10.1111/j.1467-9868.2007.00587.x, 2007.

Hashino, T., Bradley, A. A., and Schwartz, S. S.: Evaluation of bias-correction
methods for ensemble streamflow volume forecasts, Hydrol. Earth Syst. Sci., 11,
939–950, https://doi.org/10.5194/hess-11-939-2007, 2007.

Hazelton, M. L.: Methods of Moments Estimation BT – International
Encyclopedia of Statistical Science, edited by: Lovric, M., Springer Berlin
Heidelberg, Berlin, Heidelberg, 816–817, 2011.

Hersbach, H.: Decomposition of the Continuous Ranked Probability Score for
Ensemble Prediction Systems, Weather Forecast., 15, 559–570,
https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2, 2000.

Hudson, D., Marshall, A. G., Yin, Y., Alves, O., and Hendon, H. H.: Improving
Intraseasonal Prediction with a New Ensemble Generation Strategy, Mon.
Weather Rev., 141, 4429–4449, https://doi.org/10.1175/MWR-D-13-00059.1, 2013.

Humphrey, G. B., Gibbs, M. S., Dandy, G. C., and Maier, H. R.: A hybrid
approach to monthly streamflow forecasting: Integrating hydrological model
outputs into a Bayesian artificial neural network, J. Hydrol., 540,
623–640, https://doi.org/10.1016/j.jhydrol.2016.06.026, 2016.

Jeffrey, S. J., Carter, J. O., Moodie, K. B., and Beswick, A. R.: Using
spatial interpolation to construct a comprehensive archive of Australian
climate data, Environ. Model. Softw., 16, 309–330,
https://doi.org/10.1016/S1364-8152(01)00008-1, 2001.

Kavetski, D., Kuczera, G., and Franks, S. W.: Bayesian analysis of input
uncertainty in hydrological modeling: 1. Theory, Water Resour. Res., 42,
W03407, https://doi.org/10.1029/2005WR004368, 2006.

Knoche, M., Fischer, C., Pohl, E., Krause, P., and Merz, R.: Combined
uncertainty of hydrological model complexity and satellite-based forcing data
evaluated in two data-scarce semi-arid catchments in Ethiopia, J. Hydrol.,
519, 2049–2066, https://doi.org/10.1016/j.jhydrol.2014.10.003, 2014.

Kuczera, G., Kavetski, D., Franks, S., and Thyer, M.: Towards a Bayesian
total error analysis of conceptual rainfall-runoff models: Characterising
model error using storm-dependent parameters, J. Hydrol., 331,
161–177, https://doi.org/10.1016/j.jhydrol.2006.05.010, 2006.

Laio, F. and Tamea, S.: Verification tools for probabilistic forecasts of continuous hydrological
variables, Hydrol. Earth Syst. Sci., 11, 1267–1277, https://doi.org/10.5194/hess-11-1267-2007, 2007.

Laugesen, R., Tuteja, N. K., Shin, D., Chia, T., and Khan, U.: Seasonal
Streamflow Forecasting with a workflow-based dynamic hydrologic modelling
approach, in: MODSIM 2011 – 19th International Congress on Modelling and
Simulation – Sustaining Our Future: Understanding and Living with
Uncertainty, 2352–2358, available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-84858823270&partnerID=tZOtx3y1 (last access: 7 November 2018),
2011.

Lerat, J., Pickett-Heaps, C., Shin, D., Zhou, S., Feikema, P., Khan, U.,
Laugesen, R., Tuteja, N., Kuczera, G., Thyer, M., and Kavetski, D.: Dynamic
streamflow forecasts within an uncertainty framework for 100 catchments in
Australia, in In: 36th Hydrology and Water Resources Symposium: The art and
science of water, 1396–1403, Barton, ACT: Engineers Australia, 2015.

Li, M., Wang, Q. J., Bennett, J. C., and Robertson, D. E.: Error reduction and
representation in stages (ERRIS) in hydrological modelling for ensemble streamflow
forecasting, Hydrol. Earth Syst. Sci., 20, 3561–3579, https://doi.org/10.5194/hess-20-3561-2016, 2016.

Lü, H., Crow, W. T., Zhu, Y., Ouyang, F., and Su, J.: Improving
streamflow prediction using remotely-sensed soil moisture and snow depth,
Remote Sens., 8, 503, https://doi.org/10.3390/rs8060503, 2016.

Madadgar, S., Moradkhani, H., and Garen, D.: Towards improved post-processing
of hydrologic forecast ensembles, Hydrol. Proc., 28, 104–122,
https://doi.org/10.1002/hyp.9562, 2014.

Matte, S., Boucher, M.-A., Boucher, V., and Fortier Filion, T.-C.: Moving beyond the
cost-loss ratio: economic assessment of streamflow forecasts for a risk-averse
decision maker, Hydrol. Earth Syst. Sci., 21, 2967–2986, https://doi.org/10.5194/hess-21-2967-2017, 2017.

McInerney, D., Thyer, M., Kavetski, D., Lerat, J., and Kuczera, G.: Improving
probabilistic prediction of daily streamflow by identifying Pareto optimal
approaches for modeling heteroscedastic residual errors, Water Resour. Res.,
53, 2199–2239, https://doi.org/10.1002/2016WR019168, 2017.

Mendoza, P. A., Wood, A. W., Clark, E., Rothwell, E., Clark, M. P., Nijssen, B., Brekke, L. D.,
and Arnold, J. R.: An intercomparison of approaches for improving operational
seasonal streamflow forecasts, Hydrol. Earth Syst. Sci., 21, 3915–3935,
https://doi.org/10.5194/hess-21-3915-2017, 2017.

Middleton, N., Programme, U. N. E., and Thomas, D. S. G.: World Atlas of
Desertification, Arnold, 1997.

Morss, R. E., Lazo, J. K., and Demuth, J. L.: Examining the use of weather
forecasts in decision scenarios: Results from a us survey with implications
for uncertainty communication, Meteorol. Appl., 17, 149–162,
https://doi.org/10.1002/met.196, 2010.

Murphy, A. H. and Ehrendorfer, M.: On the relationship between the accuracy
and value of forecasts in the cost–loss ratio situation, Weather Forecast.,
2, 243–251, https://doi.org/10.1175/1520-0434(1987)002<0243:OTRBTA>2.0.CO;2, 1987.

Perrin, C., Michel, C., and Andréassian, V.: Improvement of a
parsimonious model for streamflow simulation, J. Hydrol., 279,
275–289, https://doi.org/10.1016/S0022-1694(03)00225-7, 2003.

Pokhrel, P., Robertson, D. E., and Wang, Q. J.: A Bayesian joint probability post-processor
for reducing errors and quantifying uncertainty in monthly streamflow predictions,
Hydrol. Earth Syst. Sci., 17, 795–804, https://doi.org/10.5194/hess-17-795-2013, 2013.

Prudhomme, C., Hannaford, J., Harrigan, S., Boorman, D., Knight, J., Bell,
V., Jackson, C., Svensson, C., Parry, S., Bachiller-Jareno, N., Davies, H.,
Davis, R., Mackay, J., McKenzie, A., Rudd, A., Smith, K., Bloomfield, J.,
Ward, R., and Jenkins, A.: Hydrological Outlook UK: an operational streamflow
and groundwater level forecasting system at monthly to seasonal time scales,
Hydrol. Sci. J., 62, 2753–2768, https://doi.org/10.1080/02626667.2017.1395032,
2017.

Renard, B., Kavetski, D., Leblois, E., Thyer, M., Kuczera, G., and Franks, S.
W.: Toward a reliable decomposition of predictive uncertainty in
hydrological modeling: Characterizing rainfall errors using conditional
simulation, Water Resour. Res., 47, W11516, https://doi.org/10.1029/2011WR010643,
2011.

Robertson, D. E. and Wang, Q. J.: Selecting predictors for seasonal
streamflow predictions using a Bayesian joint probability (BJP) modelling
approach, 18th World IMACS/MODSIM Congr. Cairns, Aust. 13–17 July 2009,
376–382, 2009.

Robertson, D. E. and Wang, Q. J.: A Bayesian Approach to Predictor Selection
for Seasonal Streamflow Forecasting, J. Hydrometeorol., 13, 155–171,
https://doi.org/10.1175/JHM-D-10-05009.1, 2011.

Robertson, D. E., Pokhrel, P., and Wang, Q. J.: Improving statistical forecasts of
seasonal streamflows using hydrological model output, Hydrol. Earth Syst. Sci.,
17, 579–593, https://doi.org/10.5194/hess-17-579-2013, 2013a.

Robertson, D. E., Shrestha, D. L., and Wang, Q. J.: Post-processing
rainfall forecasts from numerical weather prediction models for short-term
streamflow forecasting, Hydrol. Earth Syst. Sci., 17, 3587–3603,
https://doi.org/10.5194/hess-17-3587-2013, 2013b.

Sawicz, K. A., Kelleher, C., Wagener, T., Troch, P., Sivapalan, M., and Carrillo, G.:
Characterizing hydrologic change through catchment classification, Hydrol. Earth
Syst. Sci., 18, 273–285, https://doi.org/10.5194/hess-18-273-2014, 2014.

Schick, S., Rössler, O., and Weingartner, R.: Monthly streamflow forecasting at
varying spatial scales in the Rhine basin, Hydrol. Earth Syst. Sci., 22, 929–942,
https://doi.org/10.5194/hess-22-929-2018, 2018.

Senlin, Z., Feikema, P., Shin, D., Tuteja, N. K., MacDonald, A., Sunter, P.,
Kent, D., Le, B., Pipunic, R., Wilson, T., Pickett-Heaps, C., and Lerat, J.:
Operational efficiency measures of the national seasonal streamflow forecast
service in Australia, edited by: Syme, G., MacDonald, D. H., Fulton, B., and Piantadosi,
J., The Modelling and Simulation Society of Australia and New
Zealand Inc, Hobart, Australia., 2017.

Seo, D.-J., Herr, H. D., and Schaake, J. C.: A statistical post-processor for
accounting of hydrologic uncertainty in short-range ensemble streamflow prediction,
Hydrol. Earth Syst. Sci. Discuss., 3, 1987–2035, https://doi.org/10.5194/hessd-3-1987-2006, 2006.

Shapiro, S. S. and Wilk, M. B.: An Analysis of Variance Test for Normailty
(Complete Samples), Biometrika, 52, 591–611, https://doi.org/10.2307/1267427,
1965.

Smith, T., Marshall, L., and Sharma, A.: Modeling residual hydrologic errors
with Bayesian inference, J. Hydrol., 528, 29–37,
https://doi.org/10.1016/j.jhydrol.2015.05.051, 2015.

Tang, Q. and Lettenmaier, D. P.: Use of satellite snow-cover data for
streamflow prediction in the Feather River Basin, California, Int. J. Remote
Sens., 31, 3745–3762, https://doi.org/10.1080/01431161.2010.483493, 2010.

Taschetto, A. S. and England, M. H.: An analysis of late twentieth century
trends in Australian rainfall, Int. J. Climatol., 29, 791–807,
https://doi.org/10.1002/joc.1736, 2009.

Timbal, B. and McAvaney, B. J.: An Analogue based method to downscale
surface air temperature: Application for Australia, Clim. Dynam, 17,
947–963, https://doi.org/10.1007/s003820100156, 2001.

Turner, S. W. D., Bennett, J. C., Robertson, D. E., and Galelli, S.: Complex
relationship between seasonal streamflow forecast skill and value in reservoir
operations, Hydrol. Earth Syst. Sci., 21, 4841–4859, https://doi.org/10.5194/hess-21-4841-2017, 2017.

Tuteja, N. K., Shin, D., Laugesen, R., Khan, U., Shao, Q., Wang, E., Li, M.,
Zheng, H., Kuczera, G., Kavetski, D., Evin, G., Thyer, M., MacDonald, A.,
Chia, T., and Le, B.: Experimental evaluation of the dynamic seasonal
streamflow forecasting approach, Melbourne, 2011.

Tuteja, N. K., Zhou, S., Lerat, J., Wang, Q. J., Shin, D., and Robertson, D.
E.: Overview of Communication Strategies for Uncertainty in Hydrological
Forecasting in Australia, in: Handbook of Hydrometeorological Ensemble
Forecasting, edited by: Duan, Q., Pappenberger, F., Thielen, J., Wood, A., Cloke, H.
L., and Schaake, J. C., Springer Berlin Heidelberg, Berlin,
Heidelberg, 1–19, 2016.

Tyralla, C. and Schumann, A. H.: Incorporating structural uncertainty of
hydrological models in likelihood functions via an ensemble range approach,
Hydrol. Sci. J., 61, 1679–1690, https://doi.org/10.1080/02626667.2016.1164314,
2016.

Wandishin, M. S. and Brooks, H. E.: On the relationship between Clayton's
skill score and expected value for forecasts of binary events, Meteorol.
Appl., 9, 455–459, https://doi.org/10.1017/S1350482702004085, 2002.

Wang, Q. J. and Robertson, D. E.: Multisite probabilistic forecasting of
seasonal flows for streams with zero value occurrences, Water Resour. Res.,
47, https://doi.org/10.1029/2010WR009333, 2011.

Wang, Q. J., Robertson, D. E., and Chiew, F. H. S.: A Bayesian joint
probability modeling approach for seasonal forecasting of streamflows at
multiple sites, Water Resour. Res., 45, W05407, https://doi.org/10.1029/2008WR007355,
2009.

Wang, Q. J., Shrestha, D. L., Robertson, D. E., and Pokhrel, P.: A log-sinh
transformation for data normalization and variance stabilization, Water
Resour. Res., 48, W05514, https://doi.org/10.1029/2011WR010973, 2012.

Wilks, D. S.: Statistical methods in the atmospheric sciences, Amsterdam, Academic Press, 2011.

Wood, A. W. and Schaake, J. C.: Correcting Errors in Streamflow Forecast
Ensemble Mean and Spread, J. Hydrometeorol., 9, 132–148,
https://doi.org/10.1175/2007JHM862.1, 2008.

Ye, W., Bates, B. C., Viney, N. R., Sivapalan, M., and Jakeman, A. J.:
Performance of conceptual rainfall-runoff models in low-yielding ephemeral
catchments, Water Resour. Res., 33, 153–166, https://doi.org/10.1029/96WR02840,
1997.

Yin, Y., Alves, O., Oke, P. R., Yin, Y., Alves, O., and Oke, P. R.: An
ensemble ocean data assimilation system for seasonal prediction, Mon.
Weather Rev., 139, 786–808, https://doi.org/10.1175/2010MWR3419.1, 2011.

Zhang, Q., Xu, C.-Y., and Zhang, Z.: Observed changes of drought/wetness
episodes in the Pearl River basin, China, using the standardized
precipitation index and aridity index, Theor. Appl. Climatol., 98,
89–99, https://doi.org/10.1007/s00704-008-0095-4, 2009.

Zhao, T., Schepen, A., and Wang, Q. J.: Ensemble forecasting of sub-seasonal
to seasonal streamflow by a Bayesian joint probability modelling approach,
J. Hydrol., 541, 839–849,
https://doi.org/10.1016/j.jhydrol.2016.07.040, 2016.