Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Volume 22, issue 12
Hydrol. Earth Syst. Sci., 22, 6415–6434, 2018
https://doi.org/10.5194/hess-22-6415-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Hydrol. Earth Syst. Sci., 22, 6415–6434, 2018
https://doi.org/10.5194/hess-22-6415-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 10 Dec 2018

Research article | 10 Dec 2018

Redressing the balance: quantifying net intercatchment groundwater flows

Laurène Bouaziz et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to revisions (further review by editor and referees) (24 Sep 2018) by Martijn Westhoff
AR by Laurène Bouaziz on behalf of the Authors (08 Oct 2018)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (10 Oct 2018) by Martijn Westhoff
ED: Publish as is (14 Nov 2018) by Martijn Westhoff
Publications Copernicus
Download
Short summary
We quantify net intercatchment groundwater flows in the Meuse basin in a complementary three-step approach through (1) water budget accounting, (2) testing a set of conceptual hydrological models and (3) evaluating against remote sensing actual evaporation data. We show that net intercatchment groundwater flows can make up as much as 25 % of mean annual precipitation in the headwaters and should therefore be accounted for in conceptual models to prevent overestimating actual evaporation rates.
We quantify net intercatchment groundwater flows in the Meuse basin in a complementary...
Citation