Articles | Volume 22, issue 12
https://doi.org/10.5194/hess-22-6449-2018
https://doi.org/10.5194/hess-22-6449-2018
Research article
 | 
13 Dec 2018
Research article |  | 13 Dec 2018

Application of an improved global-scale groundwater model for water table estimation across New Zealand

Rogier Westerhoff, Paul White, and Gonzalo Miguez-Macho

Related authors

Application of global models and satellite data for smaller-scale groundwater recharge studies
Rogier Westerhoff, Paul White, and Zara Rawlinson
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-410,https://doi.org/10.5194/hess-2016-410, 2016
Manuscript not accepted for further review
Short summary
Automated global water mapping based on wide-swath orbital synthetic-aperture radar
R. S. Westerhoff, M. P. H. Kleuskens, H. C. Winsemius, H. J. Huizinga, G. R. Brakenridge, and C. Bishop
Hydrol. Earth Syst. Sci., 17, 651–663, https://doi.org/10.5194/hess-17-651-2013,https://doi.org/10.5194/hess-17-651-2013, 2013

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
Technical note: Novel analytical solution for groundwater response to atmospheric tides
Jose M. Bastias Espejo, Chris Turnadge, Russell S. Crosbie, Philipp Blum, and Gabriel C. Rau
Hydrol. Earth Syst. Sci., 27, 3447–3462, https://doi.org/10.5194/hess-27-3447-2023,https://doi.org/10.5194/hess-27-3447-2023, 2023
Short summary
Calibration of groundwater seepage against the spatial distribution of the stream network to assess catchment-scale hydraulic properties
Ronan Abhervé, Clément Roques, Alexandre Gauvain, Laurent Longuevergne, Stéphane Louaisil, Luc Aquilina, and Jean-Raynald de Dreuzy
Hydrol. Earth Syst. Sci., 27, 3221–3239, https://doi.org/10.5194/hess-27-3221-2023,https://doi.org/10.5194/hess-27-3221-2023, 2023
Short summary
Climate-warming-driven changes in the cryosphere and their impact on groundwater–surface-water interactions in the Heihe River basin
Amanda Triplett and Laura E. Condon
Hydrol. Earth Syst. Sci., 27, 2763–2785, https://doi.org/10.5194/hess-27-2763-2023,https://doi.org/10.5194/hess-27-2763-2023, 2023
Short summary
Comparison of artificial neural networks and reservoir models for simulating karst spring discharge on five test sites in the Alpine and Mediterranean regions
Guillaume Cinkus, Andreas Wunsch, Naomi Mazzilli, Tanja Liesch, Zhao Chen, Nataša Ravbar, Joanna Doummar, Jaime Fernández-Ortega, Juan Antonio Barberá, Bartolomé Andreo, Nico Goldscheider, and Hervé Jourde
Hydrol. Earth Syst. Sci., 27, 1961–1985, https://doi.org/10.5194/hess-27-1961-2023,https://doi.org/10.5194/hess-27-1961-2023, 2023
Short summary
A general model of radial dispersion with wellbore mixing and skin effects
Wenguang Shi, Quanrong Wang, Hongbin Zhan, Renjie Zhou, and Haitao Yan
Hydrol. Earth Syst. Sci., 27, 1891–1908, https://doi.org/10.5194/hess-27-1891-2023,https://doi.org/10.5194/hess-27-1891-2023, 2023
Short summary

Cited articles

Ahnert, F.: Functional relationships between denudation, relief, and uplift in large, mid-latitude drainage basins, Am. J. Sci., 268, 243–263, https://doi.org/10.2475/ajs.268.3.243, 1970. a
Arnold, J., Muttiah, R., Srinivasan, R., and Allen, P.: Regional estimation of base flow and groundwater recharge in the Upper Mississippi river basin, J. Hydrol., 227, 21–40, https://doi.org/10.1016/S0022-1694(99)00139-0, 2000. a
Bandaragoda, C., Tarboton, D. G., and Woods, R.: Application of TOPNET in the distributed model intercomparison project, J. Hydrol., 298, 178–201, https://doi.org/10.1016/j.jhydrol.2004.03.038, 2004. a
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology/Un modéle à base physique de zone d'appel variable de l'hydrologie du bassin versant, Hydrolog. Sci. Bull., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979. a
Brown, L.: Canterbury, in: Groundwaters of New Zealand, edited by: Rosen, M. R. and White, P. A., New Zealand Hydrological Society, Wellington, New Zealand, 441–459, 2001. a
Download
Short summary
Our study improved a global-scale groundwater model to build the first nationwide estimate of the water table surface in New Zealand. By identifying the main alluvial aquifers with high spatial detail, we showed that this model can help better delineate aquifer boundaries. In catchment studies we demonstrated excellent correlation with ground observations and provided water table estimates where data were sparse and across regions, which could help solve trans-boundary issues between catchments.