Blum, A. G., Archfield, S. A., and Vogel, R. M.: On the probability distribution
of daily streamflow in the United States, Hydrol. Earth Syst. Sci., 21,
3093–3103, https://doi.org/10.5194/hess-21-3093-2017, 2017.
Bonnin, G. M., Martin, D., Lin, B., Parzybok, T., Yekta, M., and Riley, D.:
Precipitation-frequency atlas of the United States, NOAA atlas, National
Oceanic and Atmospheric Administration, National Weather Service, Silver
Springs, Maryland, 14, 1–65, 2006.
Buishand, T. A.: Some remarks on the use of daily rainfall models, J. Hydrol.,
36, 295–308, 1978.
Burgueno, A., Martinez, M. D., Lana, X., and Serra, C.: Statistical distributions
of the daily rainfall regime in Catalonia (northeastern Spain) for the
years 1950–2000, Int. J. Climatol., 25, 1381–1403, 2005.
Deidda, R. and Puliga, M.: Sensitivity of goodness-of-fit statistics to rainfall
data rounding off, Phys. Chem. Earth Pt. A/B/C, 31, 1240–1251, 2006.
Duan, J., Sikka, A. K., and Grant, G. E.: A comparison of stochastic models
for generating daily precipitation at the HJ Andrews Experimental Forest,
Northwest Sci., 69, 318–329, 1995.
Duan, Q., Schaake, J., Andreassian, V., Franks, S., Goteti, G., Gupta, H. V.,
Gusev, Y. M., Habets, F., Hall, A., and Hay, L.: Model Parameter Estimation
Experiment (MOPEX): An overview of science strategy and major results from the
second and third workshops, J. Hydrol., 320, 3–17, 2006.
Easterling, D. R., Evans, J., Groisman, P. Y., Karl, T. R., Kunkel, K. E., and
Ambenje, P.: Observed variability and trends in extreme climate events: a brief
review, B. Am. Meteorol. Soc., 81, 417–425, 2000.
Geng, S., de Vries, F. W. P., and Supit, I.: A simple method for generating
daily rainfall data, Agr. Forest Meteorol., 36, 363–376, 1986.
Groisman, P. Y., Karl, T. R., Easterling, D. R., Knight, R. W., Jamason, P.
F., Hennessy, K. J., Suppiah, R., Page, C. M., Wibig, J., and Fortuniak, K.:
Changes in the probability of heavy precipitation: important indicators of
climatic change, in: Weather and Climate Extremes, Springer, Dordrecht,
243–283, 1999.
Hershfield, D. M.: Rainfall frequency atlas of the United States for
durations from 30 minutes to 24 hours and return periods from 1 to 100 years,
Technical Paper 40, U.S. Dept. of Agriculture, Washington, DC, 1961.
Hosking, J. R.: L-moments: analysis and estimation of distributions using
linear combinations of order statistics, J. Roy. Stat. Soc. Ser. B, 70,
105–124, 1990.
Hosking, J. R.: The four-parameter kappa distribution, IBM J. Res. Dev.,
38, 251–258, 1994.
Hosking, J. R. M. and Wallis, J. R.: Regional frequency analysis: an approach
based on L-moments, Cambridge University Press, Cambridge, 1997.
Karl, T. R. and Knight, R. W.: Secular trends of precipitation amount, frequency,
and intensity in the United States, B. Am. Meteorol. Soc., 79, 231–241, 1998.
Kigobe, M., McIntyre, N., Wheater, H., and Chandler, R.: Multi-site stochastic
modelling of daily rainfall in Uganda, Hydrolog. Sci. J., 56, 17–33, 2011.
Lee, S. H. and Maeng, S. J.: Frequency analysis of extreme rainfall using
L moment, Irrig. Drain., 52, 219–230, 2003.
Li, Z., Brissette, F., and Chen, J.: Finding the most appropriate precipitation
probability distribution for stochastic weather generation and hydrological
modelling in Nordic watersheds, Hydrol. Process., 27, 3718–3729, 2013.
Madsen, H., Lawrence, D., Lang, M., Martinkova, M., and Kjeldsen, T.: Review
of trend analysis and climate change projections of extreme precipitation and
floods in Europe, J. Hydrol., 519, 3634–3650, 2014.
MOPEX data sets: ftp://hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data/,
last access: December 2018.
Naghavi, B. and Yu, F. X.: Regional frequency analysis of extreme precipitation
in Louisiana, J. Hydraul. Eng., 121, 819–827, 1995.
Papalexiou, S. M.: Unified theory for stochastic modelling of hydroclimatic
processes: Preserving marginal distributions, correlation structures, and
intermittency, Adv. Water Resour., 115, 234–252, 2018.
Papalexiou, S. M. and Koutsoyiannis, D.: Entropy based derivation of probability
distributions: A case study to daily rainfall, Adv. Water Resour., 45, 51–57, 2012.
Papalexiou, S. M. and Koutsoyiannis, D.: Battle of extreme value distributions:
A global survey on extreme daily rainfall, Water Resour. Res., 49, 187–201, 2013.
Papalexiou, S. M. and Koutsoyiannis, D.: A global survey on the seasonal
variation of the marginal distribution of daily precipitation, Adv. Water Resour.,
94, 131–145, 2016.
Park, J.-S. and Jung, H.-S.: Modelling Korean extreme rainfall using a Kappa
distribution and maximum likelihood estimate, Theor. Appl. Climatol., 72, 55–64, 2002.
Pilon, P. J., Adamowski, K., and Alila, Y.: Regional analysis of annual maxima
precipitation using L-moments, Atmos. Res., 27, 81–92, 1991.
Schoof, J. T., Pryor, S. C., and Surprenant, J.: Development of daily
precipitation projections for the United States based on proba-bilistic
downscaling, J. Geophys. Res.-Atmos., 115, D13, https://doi.org/10.1029/2009JD013030,
2010.
Shoji, T. and Kitaura, H.: Statistical and geostatistical analysis of rainfall
in central Japan, Comput. Geosci., 32, 1007–1024, 2006.
Stedinger, J. R., Vogel, R. M., and Foufoula-Georgiou, E.: Frequency analysis
of extreme events, in: Handbook of Hydrology, 25, chap. 18, edited by:
Maidment, D. R., McGraw Hill Book Co, New York, 1993.
Thom, H. C.: A frequency distribution for precipitation, B. Am. Meteorol.
Soc., 32, 397, 1951.
Trenberth, K. E.: Changes in precipitation with climate change, Clim. Res.,
47, 123–138, 2011.
United States National Weather Service's Cooperative Station Network (NWS
COOP): https://mesonet.agron.iastate.edu/request/coop/obs-fe.phtml,
last access: December 2018.
Vogel, R. M. and Fennessey, N. M.: L moment diagrams should replace product
moment diagrams, Water Resour. Res., 29, 1745–1752, 1993.
Vogel, R. W. and McMartin, D. E.: Probability Plot Goodness-of-Fit and Skewness
Estimation Procedures for the Pearson Type 3 Distribution, Water Resour. Res.,
27, 3149–3158, 1991.
Waggoner, P. E.: Anticipating the frequency distribution of precipitation if
climate change alters its mean, Agr. Forest Meteorol., 47, 321–337, 1989.
Watterson, I. G. and Dix, M.: Simulated changes due to global warming in
daily precipitation means and extremes and their interpretation using the
gamma distribution, J. Geophys. Res.-Atmos., 108, D13,
https://doi.org/10.1029/2002jd002928, 2003.
Watterson, I. G.: Simulated changes due to global warming in the variability
of precipitation, and their interpretation using a gamma-distributed stochastic
model, Adv. Water Resour., 28, 1368–1381, 2005.
Waymire, E. and Gupta, V. K.: The mathematical structure of rainfall representations:
1. A review of the stochastic rainfall models, Water Resour. Res., 17, 1261–1272, 1981.
Wilby, R. L. and Wigley, T.: Future changes in the distribution of daily
precipitation totals across North America, Geophys. Res. Lett., 29, 39–31,
https://doi.org/10.1029/2001GL013048, 2002.
Wilks, D. S.: Maximum likelihood estimation for the gamma distribution using
data containing zeros, J. Climate, 3, 1495–1501, 1990.
Wilks, D. S.: Multisite generalization of a daily stochastic precipitation
generation model, Journal of Hydrology, 210, 178-191, 1998.
Wilson, P. S. and Toumi, R.. A fundamental probability distribution for heavy
rainfall, Geophys. Res. Lett., 32, L14812, https://doi.org/10.1029/2005gl022465, 2005.
Woolhiser, D. A. and Roldan, J.: Stochastic daily precipitation models: 2. A
comparison of distributions of amounts, Water Resour. Res., 18, 1461–1468, 1982.
Yoo, C., Jung, K. S., and Kim, T. W.: Rainfall frequency analysis using a mixed
Gamma distribution: evaluation of the global warming effect on daily rainfall,
Hydrol. Process., 19, 3851–3861, 2005.