Aitkenhead, J. A. and McDowell, W. H.: Soil C : N ratio as a predictor of
annual riverine DOC flux at local and global scales, Global Biogeochem. Cy.,
14, 127–138, https://doi.org/10.1029/1999gb900083, 2000.
Atkins, M. L., Santos, I. R., and Maher, D. T.: Seasonal exports and drivers
of dissolved inorganic and organic carbon, carbon dioxide, methane and
delta13C signatures in a subtropical river network, Sci. Total Environ., 575,
545–563, https://doi.org/10.1016/j.scitotenv.2016.09.020, 2017.
Battin, T. J., Kaplan, L. A., Newbold, J. D., and Hendricks, S. P.: A mixing
model analysis of stream solute dynamics and the contribution of a hyporheic
zone to ecosystem function, Freshwater Biol., 48, 995–1014,
https://doi.org/10.1046/j.1365-2427.2003.01062.x, 2003.
Battin, T. J., Kaplan, L. A., Findlay, S., Hopkinson, C. S., Marti, E.,
Packman, A. I., Newbold, J. D., and Sabater, F.: Biophysical controls on
organic carbon fluxes in fluvial networks, Nat. Geosci., 1, 95–100,
https://doi.org/10.1038/ngeo101, 2008.
Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter, A.,
and Tranvik, L. J.: The boundless carbon cycle, Nat. Geosci., 2, 598–600,
https://doi.org/10.1038/ngeo618, 2009.
Birkel, C., Soulsby, C., and Tetzlaff, D.: Integrating parsimonious models of
hydrological connectivity and soil biogeochemistry to simulate stream DOC
dynamics, J. Geophys. Res.-Biogeo., 119, 1030–1047,
https://doi.org/10.1002/2013JG002551, 2014.
Calmels, D., Galy, A., Hovius, N., Bickle, M., West, A. J., Chen, M. C., and
Chapman, H.: Contribution of deep groundwater to the weathering budget in a
rapidly eroding mountain belt, Taiwan, Earth Planet. Sc. Lett., 303, 48–58,
https://doi.org/10.1016/j.epsl.2010.12.032, 2011.
Cohn, T. A.: Adjusted maximum likelihood estimation of the moments of
lognormal populations from type 1 censored samples, US Geological Survey,
Report 88-350, 1988.
Cohn, T. A., Gilroy, E. J., and Baier, W. G.: Estimating fluvial transport of
trace constituents using a regression model with data subject to censoring,
Proceedings of the Joint Statistical Meeting, Boston, 142–151, 1992.
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J.,
Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg,
J. J., and Melack, J.: Plumbing the global carbon cycle: Integrating inland
waters into the terrestrial carbon budget, Ecosystems, 10, 171–184, 2007.
Dai, M., Yin, Z., Meng, F., Liu, Q., and Cai, W.-J.: Spatial distribution of
riverine DOC inputs to the ocean: an updated global synthesis, Curr. Opin.
Environ. Sustain., 4, 170–178, https://doi.org/10.1016/j.cosust.2012.03.003, 2012.
Degens, E. T. and Ittekkot, V.: Particulate organic carbon an overview,
Transport of carbon and minerals in major world rivers, lakes and estuaries,
Mitt. Geol.-Palaont. Inst. Univ. Hamburg, 7–27, 1985.
Dessert, C., Dupré, B., Gaillardet, J., François, L. M., and
Allègre, C. J.: Basalt weathering laws and the impact of basalt
weathering on the global carbon cycle, Chem. Geol., 202, 257–273,
https://doi.org/10.1016/j.chemgeo.2002.10.001, 2003.
Galy, V., Peucker-Ehrenbrink, B., and Eglinton, T.: Global carbon export from
the terrestrial biosphere controlled by erosion, Nature, 521, 204–207,
https://doi.org/10.1038/nature14400, 2015.
Giesler, R., Lyon, S. W., Mörth, C.-M., Karlsson, J., Karlsson, E. M.,
Jantze, E. J., Destouni, G., and Humborg, C.: Catchment-scale dissolved
carbon concentrations and export estimates across six subarctic streams in
northern Sweden, Biogeosciences, 11, 525–537,
https://doi.org/10.5194/bg-11-525-2014, 2014.
Guo, D. L., Westra, S., and Maier, H. R.: An R package for modelling actual,
potential and reference evapotranspiration, Environ. Model. Softw., 78,
216–224, https://doi.org/10.1016/j.envsoft.2015.12.019, 2016.
Hale, V. C. and McDonnell, J. J.: Effect of bedrock permeability on stream
base flow mean transit time scaling relations: 1. A multiscale catchment
intercomparison, Water Resour. Res., 52, 1358–1374,
https://doi.org/10.1002/2014wr016124, 2016.
Heimann, M. and Reichstein, M.: Terrestrial ecosystem carbon dynamics and
climate feedbacks, Nature, 451, 289–292, https://doi.org/10.1038/nature06591, 2008.
Hilton, R. G.: Climate regulates the erosional carbon export from the
terrestrial biosphere, Geomorphology, 277, 118–132,
https://doi.org/10.1016/j.geomorph.2016.03.028, 2017.
Huang, T.-H., Fu, Y.-H., Pan, P.-Y., and Chen, C.-T. A.: Fluvial carbon
fluxes in tropical rivers, Curr. Opin. Environ. Sustain., 4, 162–169,
https://doi.org/10.1016/j.cosust.2012.02.004, 2012.
Huang, H., Chen, D. J., Zhang, B. F., Zeng, L. Z., and Dahlgren, R. A.:
Modeling and forecasting riverine dissolved inorganic nitrogen export using
anthropogenic nitrogen inputs, hydroclimate, and land-use change, J. Hydrol.,
517, 95–104, https://doi.org/10.1016/j.jhydrol.2014.05.024, 2014.
Huang, J.-C., Milliman, J. D., Lee, T.-Y., Chen, Y.-C., Lee, J.-F., Liu,
C.-C., Lin, J.-C., and Kao, S.-J.: Terrain attributes of earthquake- and
rainstorm-induced landslides in orogenic mountain Belt, Taiwan, Earth Surf.
Proc. Land., 42, 1549–1559, https://doi.org/10.1002/esp.4112, 2017.
Huntington, T. G., Balch, W. M., Aiken, G. R., Sheffield, J., Luo, L.,
Roesler, C. S., and Camill, P.: Climate change and dissolved organic carbon
export to the Gulf of Maine, J. Geophys. Res.-Biogeo., 121, 2700–2716,
https://doi.org/10.1002/2015JG003314, 2016.
Jin, J., Zimmerman, A. R., Moore, P. J., and Martin, J. B.: Organic and
inorganic carbon dynamics in a karst aquifer: Santa Fe River Sink-Rise
system, north Florida, USA, J. Geophys. Res.-Biogeo., 119, 340–357,
https://doi.org/10.1002/2013JG002350, 2014.
Kao, S. J., Dai, M., Selvaraj, K., Zhai, W., Cai, P., Chen, S. N., Yang, J.
Y. T., Liu, J. T., Liu, C. C., and Syvitski, J. P. M.: Cyclone-driven deep
sea injection of freshwater and heat by hyperpycnal flow in the subtropics,
Geophys. Res. Lett., 37, L21702, https://doi.org/10.1029/2010GL044893, 2010.
Larsen, I. J. and Montgomery, D. R.: Landslide erosion coupled to tectonics
and river incision, Nat. Geosci., 5, 468–473, 2012.
Larsen, I. J., Almond, P. C., Eger, A., Stone, J. O., Montgomery, D. R., and
Malcolm, B.: Rapid Soil Production and Weathering in the Western Alps, New
Zealand, Science, 343, 637–640, https://doi.org/10.1126/science.1244908, 2014.
Lee, T.-Y., Huang, J.-C., Lee, J.-Y., Jien, S.-H., Zehetner, F., and Kao,
S.-J.: Magnified Sediment Export of Small Mountainous Rivers in Taiwan: Chain
Reactions from Increased Rainfall Intensity under Global Warming, PloS one,
10, e0138283, https://doi.org/10.1371/journal.pone.0138283, 2015.
Lin, K. C., Hamburg, S. P., Wang, L. X., Duh, C. T., Huang, C. M., Chang, C.
T., and Lin, T. C.: Impacts of increasing typhoons on the structure and
function of a subtropical forest: reflections of a changing climate, Sci.
Rep., 7, 4911, https://doi.org/10.1038/s41598-017-05288-y, 2017.
Linacre, E. T.: A simple formula for estimating evaporation rates in various
climates, using temperature data alone, Agricult. Meteorol., 18, 409–424,
1977.
Liu, S. C., Fu, C. B., Shiu, C. J., Chen, J. P., and Wu, F. T.: Temperature
dependence of global precipitation extremes, Geophys. Res. Lett., 36, L17702,
https://doi.org/10.1029/2009gl040218, 2009.
Lloret, E., Dessert, C., Gaillardet, J., Albéric, P., Crispi, O.,
Chaduteau, C., and Benedetti, M. F.: Comparison of dissolved inorganic and
organic carbon yields and fluxes in the watersheds of tropical volcanic
islands, examples from Guadeloupe (French West Indies), Chem. Geol., 280,
65–78, https://doi.org/10.1016/j.chemgeo.2010.10.016, 2011.
Lloret, E., Dessert, C., Pastor, L., Lajeunesse, E., Crispi, O., Gaillardet,
J., and Benedetti, M. F.: Dynamic of particulate and dissolved organic carbon
in small volcanic mountainous tropical watersheds, Chem. Geol., 351,
229–244, https://doi.org/10.1016/j.chemgeo.2013.05.023, 2013.
Ludwig, W., AmiotteSuchet, P., and Probst, J. L.: River discharges of carbon
to the world's oceans: Determining local inputs of alkalinity and of
dissolved and particulate organic carbon, Cr. Acad. Sci. Ii. A., 323,
1007–1014, 1996a.
Ludwig, W., Probst, J.-L., and Kempe, S.: Predicting the oceanic input of
organic carbon by continental erosion, Global Biogeochem. Cy., 10, 23–41,
https://doi.org/10.1029/95gb02925, 1996b.
Ludwig, W., Suchet, P., Munhoven, G., and Probst, J.-L.: Atmospheric
CO2 consumption by continental erosion: Present-day controls and
implications for the last glacial maximum, Glob. Planet. Change, 16,
107–120, https://doi.org/10.1016/S0921-8181(98)00016-2, 1998.
Lyons, W. B., Nezat, C. A., Carey, A. E., and Hicks, D. M.: Organic carbon
fluxes to the ocean from high-standing islands, Geology, 30, 443–446,
https://doi.org/10.1130/0091-7613(2002)030<0443:Ocftto>2.0.Co;2, 2002.
Lyons, W. B., Carey, A. E., Hicks, D. M., and Nezat, C. A.: Chemical
weathering in high-sediment-yielding watersheds, New Zealand, J. Geophys.
Res.-Earth, 110, F01008, https://doi.org/10.1029/2003JF000088, 2005.
Maberly, S. C. and Madsen, T. V.: Freshwater angiosperm carbon concentrating
mechanisms: processes and patterns, Funct. Plant Biol., 29, 393–405, 2002.
Maberly, S. C., Berthelot, S. A., Stott, A. W., and Gontero, B.: Adaptation
by macrophytes to inorganic carbon down a river with naturally variable
concentrations of CO2, J. Plant Physiol., 172, 120–127,
https://doi.org/10.1016/j.jplph.2014.07.025, 2015.
Maher, K. and Chamberlain, C. P.: Hydrologic Regulation of Chemical
Weathering and the Geologic Carbon Cycle, Science, 343, 1502–1504, 2014.
Mei, Y., Hornberger, G. M., Kaplan, L. A., Newbold, J. D., and Aufdenkampe,
A. K.: The delivery of dissolved organic carbon from a forested hillslope to
a headwater stream in southeastern Pennsylvania, USA, Water Resour. Res., 50,
5774–5796, https://doi.org/10.1002/2014WR015635, 2014.
Meybeck, M. and Vörösmarty, C.: Global transfer of carbon by rivers,
Global Change Newsletter, 37, 18–19, 1999.
Misra, K. C.: Introduction to Geochemistry: Principles and Applications,
Wiley, 2012.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models part I – A discussion of principles, J. Hydrol., 10, 282–290,
https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Parajka, J., Viglione, A., Rogger, M., Salinas, J. L., Sivapalan, M., and
Blöschl, G.: Comparative assessment of predictions in ungauged basins –
Part 1: Runoff-hydrograph studies, Hydrol. Earth Syst. Sci., 17, 1783–1795,
https://doi.org/10.5194/hess-17-1783-2013, 2013.
Runkel, R. L., Crawford, C. G., and Cohn, T. A.: Load estimator (LOADEST): a
FORTRAN program for estimating constituent loads in streams and rivers,
Techniques and Methods, US Geological Survey, 2004.
Scharlemann, J. P. W., Tanner, E. V. J., Hiederer, R., and Kapos, V.: Global
soil carbon: understanding and managing the largest terrestrial carbon pool,
Carbon Manag., 5, 81–91, https://doi.org/10.4155/cmt.13.77, 2014.
Schomakers, J., Jien, S.-H., Lee, T.-Y., Huang, J.-C., Hseu, Z.-Y., Lin, Z.
L., Lee, L.-C., Hein, T., Mentler, A., and Zehetner, F.: Soil and biomass
carbon re-accumulation after landslide disturbances, Geomorphology, 288,
164–174, https://doi.org/10.1016/j.geomorph.2017.03.032, 2017.
Schomakers, J., Mayer, H., Lee, J. Y., Lee, T. Y., Jien, S. H., Mentler, A.,
Hein, T., Huang, J. C., Hseu, Z. Y., Cheng, L. W., Yu, C. K., and Zehetner,
F.: Soil aggregate breakdown and carbon release along a chronosequence of
recovering landslide scars in a subtropical watershed, CATENA, 165, 530–536,
https://doi.org/10.1016/j.catena.2018.03.004, 2018.
Seibert, J. and Vis, M. J. P.: Teaching hydrological modeling with a
user-friendly catchment-runoff-model software package, Hydrol. Earth Syst.
Sci., 16, 3315–3325, https://doi.org/10.5194/hess-16-3315-2012, 2012.
Stutter, M. I., Richards, S., and Dawson, J. J.: Biodegradability of natural
dissolved organic matter collected from a UK moorland stream, Water Res., 47,
1169–1180, https://doi.org/10.1016/j.watres.2012.11.035, 2013.
Walvoord, M. A. and Striegl, R. G.: Increased groundwater to stream discharge
from permafrost thawing in the Yukon River basin: Potential impacts on
lateral export of carbon and nitrogen, Geophys. Res. Lett., 34, L12402,
https://doi.org/10.1029/2007GL030216, 2007.
West, A. J.: Thickness of the chemical weathering zone and implications for
erosional and climatic drivers of weathering and for carbon-cycle feedbacks,
Geology, 40, 811–814, 2012.
Winterdahl, M., Futter, M., Köhler, S., Laudon, H., Seibert, J., and
Bishop, K.: Riparian soil temperature modification of the relationship
between flow and dissolved organic carbon concentration in a boreal stream,
Water Resour. Res., 47, W08532, https://doi.org/10.1029/2010wr010235, 2011.
Wymore, A. S., Brereton, R. L., Ibarra, D. E., Maher, K., and McDowell, W.
H.: Critical zone structure controls concentration-discharge relationships
and solute generation in forested tropical montane watersheds, Water Resour.
Res., 53, 6279–6295, https://doi.org/10.1002/2016wr020016, 2017.
Yeh, T. C., Liao, C. S., Chen, T. C., Shih, Y. T., Huang, J. C., Zehetner,
F., and Hein, T.: Differences in N loading affect DOM dynamics during typhoon
events in a forested mountainous catchment, Sci. Total Environ., 633, 81–92,
https://doi.org/10.1016/j.scitotenv.2018.03.177, 2018.
Zhong, J., Li, S. L., Tao, F. X., Yue, F. J., and Liu, C. Q.: Sensitivity of
chemical weathering and dissolved carbon dynamics to hydrological conditions
in a typical karst river, Sci. Rep., 7, 42944, https://doi.org/10.1038/srep42944, 2017.