Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year 4.819
  • CiteScore value: 4.10 CiteScore 4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H index value: 99 Scimago H index 99
Volume 22, issue 1 | Copyright
Hydrol. Earth Syst. Sci., 22, 71-87, 2018
https://doi.org/10.5194/hess-22-71-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 05 Jan 2018

Research article | 05 Jan 2018

Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips – Part 2: model coupling, application, factor importance, and uncertainty

Claire Lauvernet1 and Rafael Muñoz-Carpena2 Claire Lauvernet and Rafael Muñoz-Carpena
  • 1Irstea, UR MALY, centre de Lyon-Villeurbanne, 5 Rue de la Doua, CS 20244, 69625 Villeurbanne Cedex, France
  • 2University of Florida, Agricultural and Biological Engineering, 287 Frazier Rogers Hall, P.O. Box 110570 Gainesville, FL 32611-0570, USA

Abstract. Vegetative filter strips are often used for protecting surface waters from pollution transferred by surface runoff in agricultural watersheds. In Europe, they are often prescribed along the stream banks, where a seasonal shallow water table (WT) could decrease the buffer zone efficiency. In spite of this potentially important effect, there are no systematic experimental or theoretical studies on the effect of this soil boundary condition on the VFS efficiency. In the companion paper (Muñoz-Carpena et al., 2018), we developed a physically based numerical algorithm (SWINGO) that allows the representation of soil infiltration with a shallow water table. Here we present the dynamic coupling of SWINGO with VFSMOD, an overland flow and transport mathematical model to study the WT influence on VFS efficiency in terms of reductions of overland flow, sediment, and pesticide transport. This new version of VFSMOD was applied to two contrasted benchmark field studies in France (sandy-loam soil in a Mediterranean semicontinental climate, and silty clay in a temperate oceanic climate), where limited testing of the model with field data on one of the sites showed promising results. The application showed that for the conditions of the studies, VFS efficiency decreases markedly when the water table is 0 to 1.5m from the surface. In order to evaluate the relative importance of WT among other input factors controlling VFS efficiency, global sensitivity and uncertainty analysis (GSA) was applied on the benchmark studies. The most important factors found for VFS overland flow reduction were saturated hydraulic conductivity and WT depth, added to sediment characteristics and VFS dimensions for sediment and pesticide reductions. The relative importance of WT varied as a function of soil type (most important at the silty-clay soil) and hydraulic loading (rainfall+incoming runoff) at each site. The presence of WT introduced more complex responses dominated by strong interactions in the modeled system response, reducing the typical predominance of saturated hydraulic conductivity on infiltration under deep water table conditions. This study demonstrates that when present, the WT should be considered as a key hydrologic factor in buffer design and evaluation as a water quality mitigation practice.

Download & links
Publications Copernicus
Download
Short summary
Vegetation buffers, often placed in lowlands to control runoff pollution, can exhibit limited efficiency due to seasonal shallow water tables (WTs). A new shallow water table infiltration algorithm developed in a companion paper is coupled to a complete vegetation buffer model to quantify pesticide and sediment control in the field. We evaluated the model on two field experiments in France with and without WT conditions and show WTs can control efficiency depending on land and climate settings.
Vegetation buffers, often placed in lowlands to control runoff pollution, can exhibit limited...
Citation
Share