Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
HESS | Articles | Volume 22, issue 1
Hydrol. Earth Syst. Sci., 22, 911–927, 2018
https://doi.org/10.5194/hess-22-911-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Hydrol. Earth Syst. Sci., 22, 911–927, 2018
https://doi.org/10.5194/hess-22-911-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 01 Feb 2018

Research article | 01 Feb 2018

Aerial and surface rivers: downwind impacts on water availability from land use changes in Amazonia

Wei Weng et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (25 Nov 2017) by Alexander Gelfan
AR by Wei Weng on behalf of the Authors (26 Nov 2017)  Author's response    Manuscript
ED: Publish as is (29 Dec 2017) by Alexander Gelfan
Publications Copernicus
Download
Short summary
We provide a detailed spatial analysis of hydrological impacts of land use change in Amazonia, focusing on the aspect of aerial rivers. Our approach of observation-based atmospheric moisture tracking allows us to recognize potential teleconnection between source and sink regions of atmospheric moisture. Relying on a quantitative assessment, we identified regions where water availability is most sensitive to land use change and regions where land use change is critical for a given sink region.
We provide a detailed spatial analysis of hydrological impacts of land use change in Amazonia,...
Citation