Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
HESS | Articles | Volume 22, issue 2
Hydrol. Earth Syst. Sci., 22, 943–956, 2018
https://doi.org/10.5194/hess-22-943-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 22, 943–956, 2018
https://doi.org/10.5194/hess-22-943-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 02 Feb 2018

Research article | 02 Feb 2018

A dimensionless approach for the runoff peak assessment: effects of the rainfall event structure

Ilaria Gnecco et al.
Related subject area  
Subject: Catchment hydrology | Techniques and Approaches: Theory development
Trajectories of nitrate input and output in three nested catchments along a land use gradient
Sophie Ehrhardt, Rohini Kumar, Jan H. Fleckenstein, Sabine Attinger, and Andreas Musolff
Hydrol. Earth Syst. Sci., 23, 3503–3524, https://doi.org/10.5194/hess-23-3503-2019,https://doi.org/10.5194/hess-23-3503-2019, 2019
Short summary
Contrasting rainfall-runoff characteristics of floods in desert and Mediterranean basins
Davide Zoccatelli, Francesco Marra, Moshe Armon, Yair Rinat, James A. Smith, and Efrat Morin
Hydrol. Earth Syst. Sci., 23, 2665–2678, https://doi.org/10.5194/hess-23-2665-2019,https://doi.org/10.5194/hess-23-2665-2019, 2019
Short summary
Anthropogenic and catchment characteristic signatures in the water quality of Swiss rivers: a quantitative assessment
Martina Botter, Paolo Burlando, and Simone Fatichi
Hydrol. Earth Syst. Sci., 23, 1885–1904, https://doi.org/10.5194/hess-23-1885-2019,https://doi.org/10.5194/hess-23-1885-2019, 2019
Short summary
Using paired catchments to quantify the human influence on hydrological droughts
Anne F. Van Loon, Sally Rangecroft, Gemma Coxon, José Agustín Breña Naranjo, Floris Van Ogtrop, and Henny A. J. Van Lanen
Hydrol. Earth Syst. Sci., 23, 1725–1739, https://doi.org/10.5194/hess-23-1725-2019,https://doi.org/10.5194/hess-23-1725-2019, 2019
Short summary
A topographic index explaining hydrological similarity by accounting for the joint controls of runoff formation
Ralf Loritz, Axel Kleidon, Conrad Jackisch, Martijn Westhoff, Uwe Ehret, Hoshin Gupta, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-68,https://doi.org/10.5194/hess-2019-68, 2019
Revised manuscript accepted for HESS
Short summary
Cited articles  
Alfieri, L., Laio, F., and Claps, P.: A simulation experiment for optimal design hyetograph selection, Hydrol. Process., 22, 813–820, https://doi.org/10.1002/hyp.6646, 2008. 
Baiamonte, G. and Singh, V. P.: Modelling the probability distribution of peak discharge for infiltrating hillslopes, Water Resour. Res., 53, 6018–6032, https://doi.org/10.1002/2016WR020109, 2017. 
Beven, K.: Rainfall-Runoff Modelling: The Primer: Second Edition, Wiley-Blackwell, Chichester UK, 2012. 
Bocchiola, D. and Rosso, R.: Use of a derived distribution approach for flood prediction in poorly gauged basins: A case study in Italy, Adv. Water Resour., 32, 1284–1296, https://doi.org/10.1016/j.advwatres.2009.05.005, 2009. 
Boni, G., Ferraris, L., Giannoni, F., Roth, G., and Rudari, R.: Flood probability analysis for un-gauged watersheds by means of a simple distributed hydrologic model, Adv. Water Resour., 30, 2135–2144, https://doi.org/10.1016/j.advwatres.2006.08.009, 2007. 
Publications Copernicus
Download
Short summary
The paper proposes a dimensionless framework to investigate the impact of the rainfall event structure on the runoff peak. A set of analytical expressions are derived from a constant hyetograph to assess the maximum runoff peak for a given event structure irrespective of the specific catchment. A catchment application is discussed to point out the dimensionless procedure implications and to provide some numerical examples of the rainfall structures with respect to observed rainfall events.
The paper proposes a dimensionless framework to investigate the impact of the rainfall event...
Citation