Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year 4.819
  • CiteScore value: 4.10 CiteScore 4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H index value: 99 Scimago H index 99
HESS | Articles | Volume 23, issue 1
Hydrol. Earth Syst. Sci., 23, 1-17, 2019
https://doi.org/10.5194/hess-23-1-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Understanding and predicting Earth system and hydrological...

Hydrol. Earth Syst. Sci., 23, 1-17, 2019
https://doi.org/10.5194/hess-23-1-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 02 Jan 2019

Research article | 02 Jan 2019

A simple model for local-scale sensible and latent heat advection contributions to snowmelt

Phillip Harder et al.
Related authors  
Hydrometeorological data from Marmot Creek Research Basin, Canadian Rockies
Xing Fang, John W. Pomeroy, Chris M. DeBeer, Phillip Harder, and Evan Siemens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-117,https://doi.org/10.5194/essd-2018-117, 2018
Manuscript under review for ESSD
Short summary
Accuracy of snow depth estimation in mountain and prairie environments by an unmanned aerial vehicle
Phillip Harder, Michael Schirmer, John Pomeroy, and Warren Helgason
The Cryosphere, 10, 2559-2571, https://doi.org/10.5194/tc-10-2559-2016,https://doi.org/10.5194/tc-10-2559-2016, 2016
Short summary
Related subject area  
Subject: Snow and Ice | Techniques and Approaches: Modelling approaches
Assimilation of passive microwave AMSR-2 satellite observations in a snowpack evolution model over northeastern Canada
Fanny Larue, Alain Royer, Danielle De Sève, Alexandre Roy, and Emmanuel Cosme
Hydrol. Earth Syst. Sci., 22, 5711-5734, https://doi.org/10.5194/hess-22-5711-2018,https://doi.org/10.5194/hess-22-5711-2018, 2018
Short summary
A simple temperature-based method to estimate heterogeneous frozen ground within a distributed watershed model
Michael L. Follum, Jeffrey D. Niemann, Julie T. Parno, and Charles W. Downer
Hydrol. Earth Syst. Sci., 22, 2669-2688, https://doi.org/10.5194/hess-22-2669-2018,https://doi.org/10.5194/hess-22-2669-2018, 2018
Short summary
Technical note: Representing glacier geometry changes in a semi-distributed hydrological model
Jan Seibert, Marc J. P. Vis, Irene Kohn, Markus Weiler, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 22, 2211-2224, https://doi.org/10.5194/hess-22-2211-2018,https://doi.org/10.5194/hess-22-2211-2018, 2018
Short summary
Projected cryospheric and hydrological impacts of 21st century climate change in the Ötztal Alps (Austria) simulated using a physically based approach
Florian Hanzer, Kristian Förster, Johanna Nemec, and Ulrich Strasser
Hydrol. Earth Syst. Sci., 22, 1593-1614, https://doi.org/10.5194/hess-22-1593-2018,https://doi.org/10.5194/hess-22-1593-2018, 2018
Short summary
Scenario approach for the seasonal forecast of Kharif flows from the Upper Indus Basin
Muhammad Fraz Ismail and Wolfgang Bogacki
Hydrol. Earth Syst. Sci., 22, 1391-1409, https://doi.org/10.5194/hess-22-1391-2018,https://doi.org/10.5194/hess-22-1391-2018, 2018
Cited articles  
Aiken, R. M., Flerchinger, G. N., Farahani, H. J., and Johnsen, K. E.: Energy Balance Simulation for Surface Soil and Residue Temperatures with Incomplete Cover, Agron. J., 89, 404–415, 1997. 
Brun, E., Martin, E., Simon, V., Gendre, C., and Coleou, C.: An Energy and Mass Model of Snow Cover Suitable for Operational Avalanche Forecastiong, J. Glaciol., 35, 333–342, 1989. 
Essery, R. and Pomeroy, J. W.: Implications of spatial distributions of snow mass and melt rate for snow-cover depletion: theoretical considerations, Ann. Glaciol., 38, 261–265, https://doi.org/10.3189/172756404781815275, 2004. 
Essery, R., Granger, R. J., and Pomeroy, J. W.: Boundary-layer growth and advection of heat over snow and soil patches: modelling and parameterization, Hydrol. Process., 20, 953–967, 2006. 
Fang, X. and Pomeroy, J. W.: Snowmelt runoff sensitivity analysis to drought on the Canadian prairies, Hydrol. Process., 21, 2594–2609, https://doi.org/10.1002/hyp.6796, 2007. 
Publications Copernicus
Special issue
Download
Short summary
As snow cover becomes patchy during snowmelt, energy is advected from warm snow-free surfaces to cold snow-covered surfaces. This paper proposes a simple sensible and latent heat advection model for snowmelt situations that can be coupled to one-dimensional energy balance snowmelt models. The model demonstrates that sensible and latent heat advection fluxes can compensate for one another, especially in early melt periods.
As snow cover becomes patchy during snowmelt, energy is advected from warm snow-free surfaces to...
Citation
Share