Aas, K., Czado, C., Frigessi, A., and Bakken, H.: Pair-copula constructions of
multiple dependence, Insur. Math. Econ., 44, 182–198,
https://doi.org/10.1016/j.insmatheco.2007.02.001, 2009. a

Asadi, P., Davison, A. C., and Engelke, S.: Extremes on river networks,
Ann. Appl. Stat., 9, 2023–2050, https://doi.org/10.1214/15-AOAS863, 2015. a, b, c, d

Bárdossy, A.: Copula-based geostatistical models for groundwater quality
parameters, Water Resour. Res., 42, 1–12, https://doi.org/10.1029/2005WR004754,
2006. a

Bárdossy, A.: Calibration of hydrological model parameters for ungauged catchments, Hydrol.
Earth Syst. Sci., 11, 703–710, https://doi.org/10.5194/hess-11-703-2007, 2007. a

Bárdossy, A. and Li, J.: Geostatistical interpolation using copulas,
Water Resour. Res., 44, 1–15, https://doi.org/10.1029/2007WR006115, 2008. a, b, c, d

Bevacqua, E., Maraun, D., Hobæk Haff, I., Widmann, M., and Vrac, M.: Multivariate
statistical modelling of compound events via pair-copula constructions:
analysis of floods in Ravenna (Italy), Hydrol. Earth Syst. Sci., 21, 2701–2723,
https://doi.org/10.5194/hess-21-2701-2017, 2017. a

Blanchet, J., Aly, C., Vischel, T., Panthou, G., Sané, Y., and Kane,
M. D.: Trend in the co-occurrence of extreme daily rainfall in West Africa
since 1950, J. Geophys. Res.-Atmos., 123, 1–16,
https://doi.org/10.1002/2017JD027219, 2018. a, b, c, d

Borg, I. and Groenen, P.: Modern Multidimensional Scaling: Theory and
Applications, Springer, New York, 2010. a

Brunner, M. I., Furrer, R., Sikorska, A. E., Viviroli, D., Seibert, J., and
Favre, A.-C.: Synthetic design hydrographs for ungauged catchments: A
comparison of regionalization methods, Stoch. Env. Res.
Risk A., 32, 1993–2023,
https://doi.org/10.1007/s00477-018-1523-3, 2018a. a

Brunner, M. I., Sikorska, A. E., Furrer, R., and Favre, A.-C.: Uncertainty
assessment of synthetic design hydrographs for gauged and ungauged
catchments, Water Resour. Res., 54, 1–20,
https://doi.org/10.1002/2017WR021129, 2018b. a

Chen, G. and Balakrishnan, N.: A general purpose approximate goodness-of-fit
test, J. Qual. Technol., 2, 154–161, 1995. a

Coles, S.: An introduction to statistical modeling of extreme values,
Springer, London, 2001. a, b

Cooley, D., Naveau, P., and Poncet, P.: Variograms for spatial max-stable
random fields, in: Lecture Notes in Statistics. Dependence in Probability
and Statistics, Springer, New York, 373–390, 2006. a

Cooley, D., Cisewski, J., Erhardt, R. J., Jeon, S., Mannshardt, E., Omolo,
B. O., and Sun, Y.: A survey of spatial extremes: Measuring spatial
dependence and modeling spatial effects, Revstat-Stat. J., 10,
135–165, 2012. a, b

Davison, A. C., Padoan, S. A., and Ribatet, M.: Statistical Modeling of
Spatial Extremes, Stat. Sci., 27, 161–186,
https://doi.org/10.1214/11-STS376, 2012. a, b, c, d

Dißmann, J., Brechmann, E. C., Czado, C., and Kurowicka, D.: Selecting and
estimating regular vine copulae and application to financial returns,
Comput. Stat. Data An., 59, 52–69,
https://doi.org/10.1016/j.csda.2012.08.010, 2013. a, b

Dung, N. V., Merz, B., Bárdossy, A., and Apel, H.: Handling uncertainty
in bivariate quantile estimation – An application to flood hazard analysis in
the Mekong Delta, J. Hydrol., 527, 704–717,
https://doi.org/10.1016/j.jhydrol.2015.05.033, 2015. a

Durante, F. and Salvadori, G.: On the construction of multivariate extreme
value models via copulas, Environmetrics, 21, 143–161, 2010. a

Durante, F. and Sempi, C.: Principles of copula theory, CRC Press, Taylor
& Francis Group, Boca Raton, 2015. a

Durocher, M., Chebana, F., and Ouarda, T. B. M. J.: Delineation of homogenous
regions using hydrological variables predicted by projection pursuit
regression, Hydrol. Earth Syst. Sci., 20, 4717–4729,
https://doi.org/10.5194/hess-20-4717-2016, 2016. a

Evin, G., Blanchet, J., Paquet, E., Garavaglia, F., and Penot, D.: A regional
model for extreme rainfall based on weather patterns subsampling, J.
Hydrol., 541, 1185–1198, https://doi.org/10.1016/j.jhydrol.2016.08.024, 2016. a

Evin, G., Favre, A.-C., and Hingray, B.: Stochastic generation of multi-site
daily precipitation focusing on extreme events, Hydrol. Earth Syst. Sci., 22,
655–672, https://doi.org/10.5194/hess-22-655-2018, 2018. a

Favre, A.-C., Adlouni, S. E., Perreault, L., Thiémonge, N., and
Bobée, B.: Multivariate hydrological frequency analysis using
copulas, Water Resour. Res., 40, W01101, https://doi.org/10.1029/2003WR002456, 2004. a

Favre, A.-C., Quessy, J.-F., and Toupin, M.-H.: The new family of Fisher
copulas to model upper tail dependence and radial asymmetry: properties and
application to high-dimensional rainfall data, Environmetrics, 29,
1–17, https://doi.org/10.1002/env.2494, 2018. a, b, c, d, e, f, g, h

Federal Office for the Environment FOEN: Verzeichnis der
eidgenössischen hydrometrischen Stationen auf Ende 2009, Hydrologisches
Jahrbuch Schweiz, 59–78,
2009. a

Fischer, S., Gräler, B., and Schumann, A.: Spatio-temporal assessment of
flood events by hierarchical Kendall-copulas, in: EGU General Assembly
2017,
Geophysical Research Abstracts, vol. 19, Vienna,
2017. a

Genest, C. and Favre, A.-C.: Everything you always wanted to know about copula
modeling but were afraid to ask, J. Hydrol. Eng., 12,
347–367, https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(347), 2007. a, b, c

Genest, C. and Rivest, L. P.: On the multivariate probability integral
transformation, Stat. Probabil. Lett., 53, 391–399,
https://doi.org/10.1016/S0167-7152(01)00047-5, 2001. a

Ghizzoni, T., Roth, G., and Rudari, R.: Multivariate skew-t approach to the
design of accumulation risk scenarios for the flooding hazard, Adv.
Water Resour., 33, 1243–1255, https://doi.org/10.1016/j.advwatres.2010.08.003, 2010. a, b, c

Ghizzoni, T., Roth, G., and Rudari, R.: Multisite flooding hazard assessment
in the Upper Mississippi River, J. Hydrol., 412–413, 101–113,
https://doi.org/10.1016/j.jhydrol.2011.06.004, 2012. a, b

Girons Lopez, M. and Seibert, J.: Influence of hydro-meteorological data
spatial aggregation on streamflow modelling, J. Hydrol., 541,
1212–1220, https://doi.org/10.1016/j.jhydrol.2016.08.026, 2016. a, b

Gräler, B.: Modelling skewed spatial random fields through the spatial
vine copula, Spat. Stat., 10, 87–102,
https://doi.org/10.1016/j.spasta.2014.01.001, 2014. a, b, c

Grimaldi, S., Petroselli, A., Salvadori, G., and De Michele, C.: Catchment
compatibility via copulas: A non-parametric study of the dependence
structures of hydrological responses, Adv. Water Resour., 90,
116–133, https://doi.org/10.1016/j.advwatres.2016.02.003, 2016. a

Guldener, H. and Wieland, C.: The Thur river and its highfloods, in:
INTERPRAEVENT 1980, Bad Ischl, 225–235, 1980. a

Haberlandt, U., Hundecha, Y., Pahlow, M., and Schumann, A. H.: Rainfall
Generators for Application in Flood Studies, in: Flood Risk Assessment and
Management, edited by: Schumann, A., chap. 7, Springer
Science+Business Media, Dordrecht, 117–147, 2011. a

Harrell, F. E.: Regression Modeling Strategies. With applications to linear
models, logistic and ordinal regression, and survival analysis, Springer,
Cham, 2015. a

Heffernan, J. E. and Tawn, J.: A conditional approach to modelling
multivariate extreme values, J. R. Stat. Soc.
B, 66, 497–546,
https://doi.org/10.1111/j.1467-9868.2004.02050.x, 2004. a

Hosking, J. R. M. and Wallis, J. R.: Regional frequency analysis, Cambridge
University Press, Cambridge, https://doi.org/10.1017/CBO9780511529443, 1997. a

Joe, H.: Dependence modeling with copulas, Chapman & Hall/CRC, Boca Raton,
2014. a

Kabluchko, Z., Schlather, M., and de Haan, L.: Stationary max-stable fields
associated to negative definite functions, Ann. Probab., 37,
2042–2065, https://doi.org/10.1214/09-AOP455, 2009. a

Kazianka, H. and Pilz, J.: Spatial interpolation using copula-based
geostatistical models, in: geoENV VII – Geostatistics for Environmental
Applications, edited by: Atkinson, P. and Lloyd, C., Springer,
Southampton, 307–319, 2010. a

Keef, C., Svensson, C., and Tawn, J. A.: Spatial dependence in extreme river
flows and precipitation for Great Britain, J. Hydrol., 378,
240–252, https://doi.org/10.1016/j.jhydrol.2009.09.026, 2009. a

Keef, C., Tawn, J. A., and Lamb, R.: Estimating the probability of widespread
flood events, Environmetrics, 24, 13–21, https://doi.org/10.1002/env.2190, 2013. a, b, c, d

Khoudraji, A.: Contribution à l'étude des copules et à la
modélisation de valeurs extrêmes bivariées, PhD thesis,
Université Laval, Québec, Canada, 1995. a

Lee, D. and Joe, H.: Multivariate extreme value copulas with factor and tree
dependence structures, Extremes, 1–30, https://doi.org/10.1007/s10687-017-0298-0,
2017. a

Li, L. and Lu, Z.: A new method for model validation with multivariate
output, Reliab. Eng. Syst. Saf., 169, 579–592,
https://doi.org/10.1016/j.ress.2017.10.005, 2018. a

Malevergne, Y. and Sornette, D.: Testing the Gaussian copula hypothesis for
financial assets dependences, Quant. Financ., 3, 231–250, 2003. a, b

Naveau, P., Huser, R., Ribereau, P., and Hannart, A.: Modeling jointly low,
moderate, and heavy rainfall intensiies without a threshold selection, Water Resour. Res.,
52, 2753–2769, https://doi.org/10.1002/2015WR018552, 2016. a

Neal, J., Keef, C., Bates, P., Beven, K., and Leedal, D.: Probabilistic flood
risk mapping including spatial dependence, Hydrol. Process., 27,
1349–1363, https://doi.org/10.1002/hyp.9572, 2013. a, b, c, d, e

Nelsen, R. B.: An introduction to copulas, Springer Science &
Business Media, New York, 2nd edn., 2005. a

Padoan, S. A.: Max-Stable Processes, in: Encyclopedia of Environmetrics, John
Wiley & Sons Ltd., https://doi.org/10.1002/9780470057339.vnn022, 2013. a

Pappadà, R., Durante, F., Salvadori, G., and De Michele, C.: Clustering
of concurrent flood risks via Hazard Scenarios, Spat. Stat., 23,
124–142, https://doi.org/10.1016/j.spasta.2017.12.002, 2018. a

Poulin, A., Huard, D., Favre, A.-C., and Pugin, S.: Importance of tail
dependence in bivariate frequency analysis, J. Hydrol.
Eng., 12, 394–403, https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(394), 2007. a, b, c

Quessy, J. F., Rivest, L. P., and Toupin, M. H.: On the family of multivariate
chi-square copulas, J. Multivariate Anal., 152, 40–60,
https://doi.org/10.1016/j.jmva.2016.07.007, 2016. a, b

Ribatet, M. and Sedki, M.: Extreme value copulas and max-stable processes,
Journal de la Société Française de Statistique, 154,
138–150,
2013. a

Salvadori, G. and De Michele, C.: Frequency analysis via copulas: Theoretical
aspects and applications to hydrological events, Water Resour. Res.,
40, W12511, https://doi.org/10.1029/2004WR003133, 2004. a

Salvadori, G. and De Michele, C.: On the Use of Copulas in Hydrology: Theory
and Practice, J. Hydrol. Eng., 12, 369–380,
https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(369),
2007. a

Salvadori, G., Michele, C. D., Kottegoda, N. T., and Rosso, R.: Extremes in
nature. An approach using copulas, vol. 56 of *Water Science and Technology Library*, Springer, Dordrecht, 2007. a

Salvadori, G., Tomasicchio, G. R., and D'Alessandro, F.: Practical guidelines
for multivariate analysis and design in coastal and off-shore engineering,
Coast. Eng., 88, 1–14, https://doi.org/10.1016/j.coastaleng.2014.01.011, 2014. a

Salvadori, G., Durante, F., Tomasicchio, G. R., and D'Alessandro, F.:
Practical guidelines for the multivariate assessment of the structural risk
in coastal and off-shore engineering, Coast. Eng., 95, 77–83, 2015. a

Salvadori, G., Durante, F., De Michele, C., Bernardi, M., and Petrella, L.: A
multivariate copula-based framework for dealing with hazard scenarios and
failure probabilities, Water Resour. Res., 52, 3701–3721,
https://doi.org/10.1002/2015WR017225,
2016. a, b

Schepsmeier, U., Stoeber, J., Christian, E., Graeler, B., Nagler, T., Erhardt,
T., Almeida, C., Min, A., Czado, C., Hofmann, M., Killiches, M., Joe, H., and
Vatter, T.: Package “VineCopula”, CRAN-R, 1–161,
https://doi.org/10.1126/science.1136800, 2017. a

Schmidt, R. and Stadtmüller, U.: Non-parametric estimation of tail
dependence, Scand. J. Stat., 33, 307–335, 2006. a, b

Schulte, M. and Schumann, A. H.: Extensive spatio-temporal assessment of
flood events by application of pair-copulas, Proc. IAHS, 370, 177–181,
https://doi.org/10.5194/piahs-370-177-2015, 2015. a, b, c

Segers, J.: Max-stable models for multivariate extremes, Revstat Statistical
Journal, 10, 61–82, 2012. a

Serinaldi, F.: An uncertain journey around the tails of multivariate
hydrological distributions, Water Resour. Res., 49, 6527–6547,
https://doi.org/10.1002/wrcr.20531, 2013. a

Serinaldi, F.: Can we tell more than we can know? The limits of bivariate
drought analyses in the United States, Stoch. Env. Res.
Risk A., 30, 1691–1704, https://doi.org/10.1007/s00477-015-1124-3, 2015. a, b

Serinaldi, F. and Kilsby, C. G.: Irreversibility and complex network behavior
of stream flow fluctuations, Physica A, 450, 585–600, https://doi.org/10.1016/j.physa.2016.01.043, 2016. a

Serinaldi, F. and Kilsby, C. G.: A Blueprint for Full Collective Flood Risk
Estimation: Demonstration for European River Flooding, Risk Anal., 37,
1958–1976, https://doi.org/10.1111/risa.12747, 2017. a

Serinaldi, F., Bardossy, A., and Kilsby, C. G.: Upper tail dependence in
rainfall extremes: would we know it if we saw it?, Stoch. Env.
Res. Risk A., 29, 1211–1233, 2015. a

Sikorska, A. E., Viviroli, D., and Seibert, J.: Flood type classification in
mountainous catchments using crisp and fuzzy decision trees, Water Resour.
Res., 51, 7959–7976, https://doi.org/10.1002/2015WR017326, 2015. a

Sklar, A.: Fonctions de répartition à n dimensions et leurs
marges, Publ. Inst Statist Univ. Paris, 8, 229–231, 1959. a

Smith, R. L., Tawn, J. A., and Yuen, H. K.: Statistics of multivariate
extremes, Int. Stat. Rev., 58, 47–58, 1990. a

Stephenson, A. G., Lehmann, E. A., and Phatak, A.: A max-stable process model
for rainfall extremes at different accumulation durations, Weather Climate Extremes,
13, 44–53, https://doi.org/10.1016/j.wace.2016.07.002, 2016.
a

Thibaud, E., Mutzner, R., and Davison, A. C.: Threshold modeling of extreme
spatial rainfall, Water Resour. Res., 49, 4633–4644,
https://doi.org/10.1002/wrcr.20329, 2013. a, b

Tyers, M.: Package “riverdist”, Tech. rep.,
available at: https://cran.r-project.org/web/packages/riverdist/riverdist.pdf (last access:
1 February 2018),
2017. a

Viviroli, D., Mittelbach, H., Gurtz, J., and Weingartner, R.: Continuous
simulation for flood estimation in ungauged mesoscale catchments of
Switzerland – Part II: Parameter regionalisation and flood estimation
results, J. Hydrol., 377, 208–225,
https://doi.org/10.1016/j.jhydrol.2009.08.022, 2009. a

Wang, Z., Yan, J., and Zhang, Y.: Incorporating spatial dependence in regional
frequency analysis, Water Resour. Res., 50, 9570–9585,
https://doi.org/10.1002/2013WR014849, 2014. a

Yan, H. and Moradkhani, H.: A regional Bayesian hierarchical model for flood
frequency analysis, Stoch. Env. Res. Risk A.,
29, 1019–1036, https://doi.org/10.1007/s00477-014-0975-3, 2015. a