Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
HESS | Articles | Volume 23, issue 2
Hydrol. Earth Syst. Sci., 23, 1113–1144, 2019
https://doi.org/10.5194/hess-23-1113-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Hydrol. Earth Syst. Sci., 23, 1113–1144, 2019
https://doi.org/10.5194/hess-23-1113-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 28 Feb 2019

Research article | 28 Feb 2019

Multi-site calibration and validation of SWAT with satellite-based evapotranspiration in a data-sparse catchment in southwestern Nigeria

Abolanle E. Odusanya et al.
Related authors  
PAttern REtrieval or deNegation Testing Scheme (PARENTS) v.1.0 – Identifying the degree of presence of given patterns in spatial time series
Benjamin Müller, Matthias Bernhardt, and Karsten Schulz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-563,https://doi.org/10.5194/hess-2019-563, 2019
Manuscript under review for HESS
Short summary
A systematic assessment of uncertainties in large scale soil loss estimation from different representations of USLE input factors – A case study for Kenya and Uganda
Christoph Schürz, Bano Mehdi, Jens Kiesel, Karsten Schulz, and Mathew Herrnegger
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-602,https://doi.org/10.5194/hess-2019-602, 2019
Manuscript under review for HESS
Short summary
A comprehensive sensitivity and uncertainty analysis for discharge and nitrate-nitrogen loads involving multiple discrete model inputs under future changing conditions
Christoph Schürz, Brigitta Hollosi, Christoph Matulla, Alexander Pressl, Thomas Ertl, Karsten Schulz, and Bano Mehdi
Hydrol. Earth Syst. Sci., 23, 1211–1244, https://doi.org/10.5194/hess-23-1211-2019,https://doi.org/10.5194/hess-23-1211-2019, 2019
Short summary
Using phase lags to evaluate model biases in simulating the diurnal cycle of evapotranspiration: a case study in Luxembourg
Maik Renner, Claire Brenner, Kaniska Mallick, Hans-Dieter Wizemann, Luigi Conte, Ivonne Trebs, Jianhui Wei, Volker Wulfmeyer, Karsten Schulz, and Axel Kleidon
Hydrol. Earth Syst. Sci., 23, 515–535, https://doi.org/10.5194/hess-23-515-2019,https://doi.org/10.5194/hess-23-515-2019, 2019
Short summary
A high-resolution air temperature data set for the Chinese Tian Shan in 1979–2016
Lu Gao, Jianhui Wei, Lingxiao Wang, Matthias Bernhardt, Karsten Schulz, and Xingwei Chen
Earth Syst. Sci. Data, 10, 2097–2114, https://doi.org/10.5194/essd-10-2097-2018,https://doi.org/10.5194/essd-10-2097-2018, 2018
Short summary
Related subject area  
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
A global Budyko model to partition evaporation into interception and transpiration
Ameneh Mianabadi, Miriam Coenders-Gerrits, Pooya Shirazi, Bijan Ghahraman, and Amin Alizadeh
Hydrol. Earth Syst. Sci., 23, 4983–5000, https://doi.org/10.5194/hess-23-4983-2019,https://doi.org/10.5194/hess-23-4983-2019, 2019
Short summary
Are the effects of vegetation and soil changes as important as climate change impacts on hydrological processes?
Kabir Rasouli, John W. Pomeroy, and Paul H. Whitfield
Hydrol. Earth Syst. Sci., 23, 4933–4954, https://doi.org/10.5194/hess-23-4933-2019,https://doi.org/10.5194/hess-23-4933-2019, 2019
Short summary
Expansion and contraction of the flowing stream network alter hillslope flowpath lengths and the shape of the travel time distribution
H. J. Ilja van Meerveld, James W. Kirchner, Marc J. P. Vis, Rick S. Assendelft, and Jan Seibert
Hydrol. Earth Syst. Sci., 23, 4825–4834, https://doi.org/10.5194/hess-23-4825-2019,https://doi.org/10.5194/hess-23-4825-2019, 2019
Short summary
A virtual hydrological framework for evaluation of stochastic rainfall models
Bree Bennett, Mark Thyer, Michael Leonard, Martin Lambert, and Bryson Bates
Hydrol. Earth Syst. Sci., 23, 4783–4801, https://doi.org/10.5194/hess-23-4783-2019,https://doi.org/10.5194/hess-23-4783-2019, 2019
Short summary
Assessing the impacts of hydrologic and land use alterations on water temperature in the Farmington River basin in Connecticut
John R. Yearsley, Ning Sun, Marisa Baptiste, and Bart Nijssen
Hydrol. Earth Syst. Sci., 23, 4491–4508, https://doi.org/10.5194/hess-23-4491-2019,https://doi.org/10.5194/hess-23-4491-2019, 2019
Short summary
Cited articles  
Abaho, P., Amanda, B., Kigobe, M., Kizza, M., and Rugumayo, A.: Climate Change and its Impacts on River Flows and Recharge in the Sezibwa Catchment, Uganda, Second Int. Conf. Adv. Eng. Technol., E.G.S. Pillay Engineering College, Nagapattinam, TamilNadu, India, 30–31 March 2012, 572–578, 2012. 
Abbaspour, K. C.: SWAT-CUP: SWAT Calibration and Uncertainty Programs- A User Manual,Department of Systems Analysis,Intergrated Assessment and Modelling (SIAM), EAWAG. Swiss Federal Institute of Aqualtic Science and Technology, Duebendorf, Switzerland, User Man., 100 pp., https://doi.org/10.1007/s00402-009-1032-4, 2015. 
Abbaspour, K. C., Johnson, C. A., and van Genuchten, M. T.: Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure, Vadose Zone J., 3, 1340–1352, https://doi.org/10.2136/vzj2004.1340, 2004. 
Abera, W., Formetta, G., Brocca, L., and Rigon, R.: Modeling the water budget of the Upper Blue Nile basin using the JGrass-NewAge model system and satellite data, Hydrol. Earth Syst. Sci., 21, 3145–3165, https://doi.org/10.5194/hess-21-3145-2017, 2017. 
Adeogun, A. G., Sule, B. F., Salami, A. W., and Okeola, O. G.: Gis-Based Hydrological Modelling Using SWAT: Case Study of Upstream Watershed of Jebba Reservoir in Nigeria, Niger. J. Technol., 33, 351–358, https://doi.org/10.4314/njt.v33i3.13, 2014. 
Publications Copernicus
Download
Short summary
The main objective was to calibrate and validate the eco-hydrological model Soil and Water Assessment Tool (SWAT) with satellite-based actual evapotranspiration (AET) data for the data-sparse Ogun River Basin (20 292 km2) located in southwestern Nigeria. The SWAT model, composed of the Hargreaves PET equation and calibrated using the GLEAM_v3.0a data (GS1), performed well for the simulation of AET and provided a good level of confidence for using the SWAT model as a decision support tool.
The main objective was to calibrate and validate the eco-hydrological model Soil and Water...
Citation