Abbaszadeh, P., Moradkhani, H., and Yan, H.: Enhancing hydrologic data
assimilation by evolutionary particle filter and Markov chain Monte
Carlo, Adv. Water Resour., 111, 192–204,
https://doi.org/10.1016/j.advwatres.2017.11.011, 2018. a

Anderson, J. L.: An adaptive covariance inflation error correction algorithm
for ensemble filters, Tellus A, 59, 210–224,
https://doi.org/10.1111/j.1600-0870.2006.00216.x, 2007. a

Anderson, J. L. and Anderson, S. L.: A Monte Carlo implementation of the
nonlinear filtering problem to produce ensemble assimilations and forecasts,
Mon. Weather Rev., 127, 2741–2758,
https://doi.org/10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2, 1999. a

Bauser, H. H., Jaumann, S., Berg, D., and Roth, K.: EnKF with closed-eye
period – towards a consistent aggregation of information in soil hydrology,
Hydrol. Earth Syst. Sci., 20, 4999–5014,
https://doi.org/10.5194/hess-20-4999-2016, 2016. a, b

Bauser, H. H., Berg, D., Klein, O., and Roth, K.: Inflation method for
ensemble Kalman filter in soil hydrology, Hydrol. Earth Syst. Sci., 22,
4921–4934, https://doi.org/10.5194/hess-22-4921-2018, 2018. a

Berg, D., Bauser, H. H., and Roth, K.: Covariance resampling for particle
filter – state and parameter estimation for soil hydrology [dataset],
https://doi.org/10.11588/data/MFU6EV, 2019. a

Botto, A., Belluco, E., and Camporese, M.: Multi-source data assimilation for
physically based hydrological modeling of an experimental hillslope, Hydrol.
Earth Syst. Sci., 22, 4251–4266, https://doi.org/10.5194/hess-22-4251-2018,
2018. a

Burgers, G., van Leeuwen, P. J., and Evensen, G.: Analysis scheme in the
ensemble Kalman filter, Mon. Weather Rev., 126, 1719–1724,
https://doi.org/10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2, 1998. a

Carsel, R. F. and Parrish, R. S.: Developing joint probability distributions of
soil water retention characteristics, Water Resour. Res., 24, 755–769,
https://doi.org/10.1029/WR024i005p00755, 1988. a

Chen, Y. and Zhang, D.: Data assimilation for transient flow in geologic
formations via ensemble Kalman filter, Adv. Water Resour., 29,
1107–1122, https://doi.org/10.1016/j.advwatres.2005.09.007, 2006. a

DeChant, C. M. and Moradkhani, H.: Examining the effectiveness and robustness
of sequential data assimilation methods for quantification of uncertainty in
hydrologic forecasting, Water Resour. Res., 48, W04518, https://doi.org/10.1029/2011WR011011, 2012. a

Doucet, A.: On sequential simulation-based methods for Bayesian filtering,
Tech. rep., University of Cambridge, Dept. of Engineering, Cambridge, UK, 1998. a

Erdal, D., Rahman, M., and Neuweiler, I.: The importance of state
transformations when using the ensemble Kalman filter for unsaturated flow
modeling: Dealing with strong nonlinearities, Adv. Water Resour.,
86, 354–365, https://doi.org/10.1016/j.advwatres.2015.09.008, 2015. a

Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic
model using Monte Carlo methods to forecast error statistics, J. Geophys. Res.-Oceans, 99, 10143–10162, https://doi.org/10.1029/94JC00572,
1994. a

Gaspari, G. and Cohn, S. E.: Construction of correlation functions in two and
three dimensions, Q. J. Roy. Meteor. Soc., 125,
723–757, https://doi.org/10.1002/qj.49712555417, 1999. a

Gordon, N. J., Salmond, D. J., and Smith, A. F. M.: Novel approach to
nonlinear/non-Gaussian Bayesian state estimation, IEE Proc.-F, 140, 107–113, https://doi.org/10.1049/ip-f-2.1993.0015, 1993. a

Guennebaud, G., Jacob, B., et al.: Eigen
v3.2.10, available at: http://eigen.tuxfamily.org (last access: 23 February 2019),
2010. a

Hamill, T. M., Whitaker, J. S., and Snyder, C.: Distance-dependent filtering of
background error covariance estimates in an ensemble Kalman filter, Mon. Weather Rev., 129, 2776–2790,
https://doi.org/10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2, 2001. a

Harlim, J. and Majda, A. J.: Catastrophic filter divergence in filtering
nonlinear dissipative systems, Commun. Math. Sci., 8,
27–43, 2010. a

Houtekamer, P. L. and Mitchell, H. L.: A sequential ensemble Kalman filter
for atmospheric data assimilation, Mon. Weather Rev., 129, 123–137,
https://doi.org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2, 2001. a

Houtekamer, P. L. and Zhang, F.: Review of the ensemble Kalman filter for
atmospheric data assimilation, Mon. Weather Rev., 144, 4489–4532,
https://doi.org/10.1175/MWR-D-15-0440.1, 2016. a

Ippisch, O., Vogel, H.-J., and Bastian, P.: Validity limits for the van
Genuchten–Mualem model and implications for parameter estimation and
numerical simulation, Adv. Water Resour., 29, 1780–1789,
https://doi.org/10.1016/j.advwatres.2005.12.011, 2006. a

Jaumann, S. and Roth, K.: Effect of unrepresented model errors on estimated
soil hydraulic material properties, Hydrol. Earth Syst. Sci., 21, 4301–4322,
https://doi.org/10.5194/hess-21-4301-2017, 2017. a

Kitagawa, G.: Monte Carlo filter and smoother for non-Gaussian nonlinear
state space models, J. Comput. Graph. Stat., 5,
1–25, https://doi.org/10.1080/10618600.1996.10474692, 1996. a

Li, C. and Ren, L.: Estimation of unsaturated soil hydraulic parameters using
the ensemble Kalman filter, Vadose Zone J., 10, 1205–1227,
https://doi.org/10.2136/vzj2010.0159, 2011. a

Li, H., Kalnay, E., Miyoshi, T., and Danforth, C. M.: Accounting for Model
Errors in Ensemble Data Assimilation, Mon. Weather Rev., 137,
3407–3419, https://doi.org/10.1175/2009MWR2766.1, 2009. a

Liu, Y., Weerts, A. H., Clark, M., Hendricks Franssen, H.-J., Kumar, S.,
Moradkhani, H., Seo, D.-J., Schwanenberg, D., Smith, P., van Dijk, A. I. J.
M., van Velzen, N., He, M., Lee, H., Noh, S. J., Rakovec, O., and Restrepo,
P.: Advancing data assimilation in operational hydrologic forecasting:
progresses, challenges, and emerging opportunities, Hydrol. Earth Syst. Sci.,
16, 3863–3887, https://doi.org/10.5194/hess-16-3863-2012, 2012. a

Man, J., Li, W., Zeng, L., and Wu, L.: Data assimilation for unsaturated flow
models with restart adaptive probabilistic collocation based Kalman filter,
Adv. Water Resour., 92, 258–270,
https://doi.org/10.1016/j.advwatres.2016.03.016, 2016. a

Manoli, G., Rossi, M., Pasetto, D., Deiana, R., Ferraris, S., Cassiani, G., and
Putti, M.: An iterative particle filter approach for coupled
hydro-geophysical inversion of a controlled infiltration experiment, J. Comput. Phys., 283, 37–51, https://doi.org/10.1016/j.jcp.2014.11.035, 2015. a

Montzka, C., Moradkhani, H., Weihermüller, L., Franssen, H.-J. H., Canty,
M.,
and Vereecken, H.: Hydraulic parameter estimation by remotely-sensed top soil
moisture observations with the particle filter, J. Hydrol., 399,
410–421, https://doi.org/10.1016/j.jhydrol.2011.01.020, 2011. a

Moradkhani, H., Hsu, K., Gupta, H., and Sorooshian, S.: Uncertainty assessment
of hydrologic model states and parameters: Sequential data assimilation using
the particle filter, Water Resour. Res., 41, W05012, https://doi.org/10.1029/2004WR003604, 2005a. a, b, c, d, e

Moradkhani, H., Sorooshian, S., Gupta, H. V., and Houser, P. R.: Dual
state–parameter estimation of hydrological models using ensemble Kalman
filter, Adv. Water Resour., 28, 135–147,
https://doi.org/10.1016/j.advwatres.2004.09.002, 2005b. a

Moradkhani, H., DeChant, C. M., and Sorooshian, S.: Evolution of ensemble data
assimilation for uncertainty quantification using the particle
filter-Markov chain Monte Carlo method, Water Resour. Res., 48, W12520, https://doi.org/10.1029/2012WR012144, 2012. a, b

Mualem, Y.: A new model for predicting the hydraulic conductivity of
unsaturated porous media, Water Resour. Res., 12, 513–522,
https://doi.org/10.1029/WR012i003p00513, 1976. a

Pham, D. T.: Stochastic methods for sequential data assimilation in strongly
nonlinear systems, Mon. Weather Rev., 129, 1194–1207,
https://doi.org/10.1175/1520-0493(2001)129<1194:SMFSDA>2.0.CO;2, 2001. a, b

Plaza, D. A., De Keyser, R., De Lannoy, G. J. M., Giustarini, L., Matgen, P.,
and Pauwels, V. R. N.: The importance of parameter resampling for soil
moisture data assimilation into hydrologic models using the particle filter,
Hydrol. Earth Syst. Sci., 16, 375–390,
https://doi.org/10.5194/hess-16-375-2012, 2012. a

Qin, J., Liang, S., Yang, K., Kaihotsu, I., Liu, R., and Koike, T.:
Simultaneous estimation of both soil moisture and model parameters using
particle filtering method through the assimilation of microwave signal,
J. Geophys. Res.-Atmos., 114, d15103, https://doi.org/10.1029/2008JD011358, 2009. a

Shi, L., Song, X., Tong, J., Zhu, Y., and Zhang, Q.: Impacts of different types
of measurements on estimating unsaturated flow parameters, J. Hydrol., 524, 549–561, https://doi.org/10.1016/j.jhydrol.2015.01.078, 2015. a

Song, X., Shi, L., Ye, M., Yang, J., and Navon, I. M.: Numerical comparison of
iterative ensemble Kalman filters for unsaturated flow inverse modeling,
Vadose Zone J., 13, https://doi.org/10.2136/vzj2013.05.0083, 2014. a

Van Genuchten, M. T.: A closed-form equation for predicting the hydraulic
conductivity of unsaturated soils, Soil Sci. Soc. Am. J.,
44, 892–898, https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980. a

van Leeuwen, P. J.: Particle filtering in geophysical systems, Mon. Weather Rev., 137, 4089–4114, https://doi.org/10.1175/2009MWR2835.1, 2009. a, b, c

Vrugt, J. A., ter Braak, C. J., Diks, C. G., and Schoups, G.: Hydrologic data
assimilation using particle Markov chain Monte Carlo simulation: Theory,
concepts and applications, Adv. Water Resour., 51, 457–478,
https://doi.org/10.1016/j.advwatres.2012.04.002, 2013. a, b

Wang, X. and Bishop, C. H.: A comparison of breeding and ensemble transform
Kalman filter ensemble forecast schemes, J. Atmos. Sci., 60, 1140–1158,
https://doi.org/10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2, 2003. a

Weerts, A. H. and El Serafy, G. Y. H.: Particle filtering and ensemble Kalman
filtering for state updating with hydrological conceptual rainfall-runoff
models, Water Resour. Res., 42, w09403, https://doi.org/10.1029/2005WR004093, 2006. a

Whitaker, J. S. and Hamill, T. M.: Evaluating methods to account for system
errors in ensemble data assimilation, Mon. Weather Rev., 140,
3078–3089, https://doi.org/10.1175/MWR-D-11-00276.1, 2012. a

Wu, C.-C. and Margulis, S. A.: Feasibility of real-time soil state and flux
characterization for wastewater reuse using an embedded sensor network data
assimilation approach, J. Hydrol., 399, 313–325,
https://doi.org/10.1016/j.jhydrol.2011.01.011, 2011. a

Xiong, X., Navon, I. M., and Uzunoglu, B.: A note on the particle filter with
posterior Gaussian resampling, Tellus A, 58, 456–460,
https://doi.org/10.1111/j.1600-0870.2006.00185.x, 2006. a

Yan, H., DeChant, C. M., and Moradkhani, H.: Improving soil moisture profile
prediction with the particle filter-Markov chain Monte Carlo method, IEEE T. Geosci. Remote, 53, 6134–6147,
https://doi.org/10.1109/TGRS.2015.2432067, 2015. a

Zhang, D., Madsen, H., Ridler, M. E., Refsgaard, J. C., and Jensen, K. H.:
Impact of uncertainty description on assimilating hydraulic head in the MIKE
SHE distributed hydrological model, Adv. Water Resour., 86,
400–413, https://doi.org/10.1016/j.advwatres.2015.07.018, 2015. a

Zhang, H., Hendricks Franssen, H.-J., Han, X., Vrugt, J. A., and Vereecken,
H.: State and parameter estimation of two land surface models using the
ensemble Kalman filter and the particle filter, Hydrol. Earth Syst. Sci., 21,
4927–4958, https://doi.org/10.5194/hess-21-4927-2017, 2017. a