Articles | Volume 23, issue 3
https://doi.org/10.5194/hess-23-1281-2019
https://doi.org/10.5194/hess-23-1281-2019
Research article
 | Highlight paper
 | 
07 Mar 2019
Research article | Highlight paper |  | 07 Mar 2019

Conservative finite-volume forms of the Saint-Venant equations for hydrology and urban drainage

Ben R. Hodges

Related authors

A new form of the Saint-Venant equations for variable topography
Cheng-Wei Yu, Ben R. Hodges, and Frank Liu
Hydrol. Earth Syst. Sci., 24, 4001–4024, https://doi.org/10.5194/hess-24-4001-2020,https://doi.org/10.5194/hess-24-4001-2020, 2020
Short summary
Comparing thixotropic and Herschel–Bulkley parameterizations for continuum models of avalanches and subaqueous debris flows
Chan-Hoo Jeon and Ben R. Hodges
Nat. Hazards Earth Syst. Sci., 18, 303–319, https://doi.org/10.5194/nhess-18-303-2018,https://doi.org/10.5194/nhess-18-303-2018, 2018
Short summary
Consistent initial conditions for the Saint-Venant equations in river network modeling
Cheng-Wei Yu, Frank Liu, and Ben R. Hodges
Hydrol. Earth Syst. Sci., 21, 4959–4972, https://doi.org/10.5194/hess-21-4959-2017,https://doi.org/10.5194/hess-21-4959-2017, 2017
Short summary
Predicting outflow induced by moraine failure in glacial lakes: the Lake Palcacocha case from an uncertainty perspective
D. S. Rivas, M. A. Somos-Valenzuela, B. R. Hodges, and D. C. McKinney
Nat. Hazards Earth Syst. Sci., 15, 1163–1179, https://doi.org/10.5194/nhess-15-1163-2015,https://doi.org/10.5194/nhess-15-1163-2015, 2015
Representing hydrodynamically important blocking features in coastal or riverine lidar topography
B. R. Hodges
Nat. Hazards Earth Syst. Sci., 15, 1011–1023, https://doi.org/10.5194/nhess-15-1011-2015,https://doi.org/10.5194/nhess-15-1011-2015, 2015
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Modelling approaches
Past and future climate change effects on the thermal regime and oxygen solubility of four peri-alpine lakes
Olivia Desgué-Itier, Laura Melo Vieira Soares, Orlane Anneville, Damien Bouffard, Vincent Chanudet, Pierre Alain Danis, Isabelle Domaizon, Jean Guillard, Théo Mazure, Najwa Sharaf, Frédéric Soulignac, Viet Tran-Khac, Brigitte Vinçon-Leite, and Jean-Philippe Jenny
Hydrol. Earth Syst. Sci., 27, 837–859, https://doi.org/10.5194/hess-27-837-2023,https://doi.org/10.5194/hess-27-837-2023, 2023
Short summary
Exploring tracer information in a small stream to improve parameter identifiability and enhance the process interpretation in transient storage models
Enrico Bonanno, Günter Blöschl, and Julian Klaus
Hydrol. Earth Syst. Sci., 26, 6003–6028, https://doi.org/10.5194/hess-26-6003-2022,https://doi.org/10.5194/hess-26-6003-2022, 2022
Short summary
How do inorganic nitrogen processing pathways change quantitatively at daily, seasonal, and multiannual scales in a large agricultural stream?
Jingshui Huang, Dietrich Borchardt, and Michael Rode
Hydrol. Earth Syst. Sci., 26, 5817–5833, https://doi.org/10.5194/hess-26-5817-2022,https://doi.org/10.5194/hess-26-5817-2022, 2022
Short summary
Inertia and seasonal climate prediction as sources of skill in lake temperature, discharge and ice-off forecasting tools
François Clayer, Leah Jackson-Blake, Daniel Mercado, Muhammed Shikhani, Andrew French, Tadhg Moore, James Sample, Magnus Norling, Maria-Dolores Frías, Sixto Herrera, Elvira de Eyto, Eleanor Jennings, Karsten Rinke, Leon van der Linden, and Rafael Marcé
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-312,https://doi.org/10.5194/hess-2022-312, 2022
Revised manuscript accepted for HESS
Short summary
Seasonal forecasting of lake water quality and algal bloom risk using a continuous Gaussian Bayesian network
Leah A. Jackson-Blake, François Clayer, Sigrid Haande, James E. Sample, and S. Jannicke Moe
Hydrol. Earth Syst. Sci., 26, 3103–3124, https://doi.org/10.5194/hess-26-3103-2022,https://doi.org/10.5194/hess-26-3103-2022, 2022
Short summary

Cited articles

Abbott, M. B. and Ionescu, F.: On The Numerical Computation Of Nearly Horizontal Flows, J. Hydraul. Res., 5, 97–117, https://doi.org/10.1080/00221686709500195, 1967. a
Aricò, C. and Tucciarelli, T.: A marching in space and time (MAST) solver of the shallow water equations. Part I: The 1D model, Adv. Water Resour., 30, 1236–1252, https://doi.org/10.1016/j.advwatres.2006.11.003, 2007. a
Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R., and Perthame, B.: A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows, SIAM J. Scient. Comput., 25, 2050–2065, https://doi.org/10.1137/S1064827503431090, 2004. a, b
Audusse, E., Bouchut, F., Bristeau, M.-O., and Sainte-Marie, J.: Kinetic Entropy Inequality and Hydrostatic Reconstruction Scheme for the Saint-Venant System, Math. Comput., 85, 2815–2837, https://doi.org/10.1090/mcom/3099, 2016. a
Blanckaert, K. and Graf, W.: Momentum transport in sharp open-channel bends, J. Hydraul. Eng.-ASCE, 130, 186–198, https://doi.org/10.1061/(ASCE)0733-9429(2004)130:3(186), 2004. a
Download
Short summary
A new derivation of the equations for one-dimensional open-channel flow in rivers and storm drainage systems has been developed. The new approach solves some long-standing problems for obtaining well-behaved solutions with conservation forms of the equations. This research was motivated by the need for highly accurate models of large-scale river networks and the storm drainage systems in megacities. Such models are difficult to create with existing equation forms.