Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year
    4.819
  • CiteScore value: 4.10 CiteScore
    4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 99 Scimago H
    index 99
HESS | Articles | Volume 23, issue 3
Hydrol. Earth Syst. Sci., 23, 1339-1354, 2019
https://doi.org/10.5194/hess-23-1339-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Hydrol. Earth Syst. Sci., 23, 1339-1354, 2019
https://doi.org/10.5194/hess-23-1339-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 11 Mar 2019

Research article | 11 Mar 2019

Effects of univariate and multivariate bias correction on hydrological impact projections in alpine catchments

Judith Meyer et al.
Related authors  
Expansion and contraction of the flowing stream network changes hillslope flowpath lengths and the shape of the travel time distribution
H. J. Ilja van Meerveld, James W. Kirchner, Marc J. P. Vis, Rick S. Assendelft, and Jan Seibert
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-218,https://doi.org/10.5194/hess-2019-218, 2019
Manuscript under review for HESS
Short summary
Projected changes to extreme freezing precipitation and design ice loads over North America based on a large ensemble of Canadian regional climate model simulations
Dae Il Jeong, Alex J. Cannon, and Xuebin Zhang
Nat. Hazards Earth Syst. Sci., 19, 857-872, https://doi.org/10.5194/nhess-19-857-2019,https://doi.org/10.5194/nhess-19-857-2019, 2019
Short summary
Projected intensification of sub-daily and daily rainfall extremes in convection-permitting climate model simulations over North America: implications for future intensity–duration–frequency curves
Alex J. Cannon and Silvia Innocenti
Nat. Hazards Earth Syst. Sci., 19, 421-440, https://doi.org/10.5194/nhess-19-421-2019,https://doi.org/10.5194/nhess-19-421-2019, 2019
Short summary
An assessment of trends and potential future changes in groundwater-baseflow drought based on catchment response times
Jost Hellwig and Kerstin Stahl
Hydrol. Earth Syst. Sci., 22, 6209-6224, https://doi.org/10.5194/hess-22-6209-2018,https://doi.org/10.5194/hess-22-6209-2018, 2018
Short summary
WFDEI-GEM-CaPA: A 38-year High-Resolution Meteorological Forcing Data Set for Land Surface Modeling in North America
Zilefac Elvis Asong, Howard Simon Wheater, John Willard Pomeroy, Alain Pietroniro, Mohamed Ezzat Elshamy, Daniel Princz, and Alex Cannon
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-128,https://doi.org/10.5194/essd-2018-128, 2018
Publication in ESSD not foreseen
Short summary
Related subject area  
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Process-based flood frequency analysis in an agricultural watershed exhibiting nonstationary flood seasonality
Guo Yu, Daniel B. Wright, Zhihua Zhu, Cassia Smith, and Kathleen D. Holman
Hydrol. Earth Syst. Sci., 23, 2225-2243, https://doi.org/10.5194/hess-23-2225-2019,https://doi.org/10.5194/hess-23-2225-2019, 2019
Short summary
Spatial and temporal variability of groundwater recharge in a sandstone aquifer in a semiarid region
Ferdinando Manna, Steven Murray, Daron Abbey, Paul Martin, John Cherry, and Beth Parker
Hydrol. Earth Syst. Sci., 23, 2187-2205, https://doi.org/10.5194/hess-23-2187-2019,https://doi.org/10.5194/hess-23-2187-2019, 2019
Short summary
Evaluating the relative importance of precipitation, temperature and land-cover change in the hydrologic response to extreme meteorological drought conditions over the North American High Plains
Annette Hein, Laura Condon, and Reed Maxwell
Hydrol. Earth Syst. Sci., 23, 1931-1950, https://doi.org/10.5194/hess-23-1931-2019,https://doi.org/10.5194/hess-23-1931-2019, 2019
Short summary
Identifying El Niño–Southern Oscillation influences on rainfall with classification models: implications for water resource management of Sri Lanka
Thushara De Silva M. and George M. Hornberger
Hydrol. Earth Syst. Sci., 23, 1905-1929, https://doi.org/10.5194/hess-23-1905-2019,https://doi.org/10.5194/hess-23-1905-2019, 2019
Short summary
Assessing the impact of resolution and soil datasets on flash-flood modelling
Alexane Lovat, Béatrice Vincendon, and Véronique Ducrocq
Hydrol. Earth Syst. Sci., 23, 1801-1818, https://doi.org/10.5194/hess-23-1801-2019,https://doi.org/10.5194/hess-23-1801-2019, 2019
Short summary
Cited articles  
Addor, N. and Seibert, J.: Bias correction for hydrological impact studies – beyond the daily perspective, Hydrol. Process., 28, 4823–4828, https://doi.org/10.1002/hyp.10238, 2014. 
Addor, N., Rössler, O., Köplin, N., Huss, M., Weingartner, R., and Seibert, J.: Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments, Water Resour. Res., 50, 7541–7562, https://doi.org/10.1002/2014WR015549, 2014. 
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005. 
Beaulieu, M., Schreier, H., and Jost, G.: A shifting hydrological regime: A field investigation of snowmelt runoff processes and their connection to summer base flow, Sunshine Coast, British Columbia, Hydrol. Process., 26, 2672–2682, https://doi.org/10.1002/hyp.9404, 2012. 
Bergström, S.: Development and application of a conceptual runoff model for Scandinavian catchments, SMHI, Norrköping, 1976. 
Publications Copernicus
Download
Short summary
Several multivariate bias correction methods have been developed recently, but only a few studies have tested the effect of multivariate bias correction on hydrological impact projections. This study shows that incorporating or ignoring inter-variable relations between air temperature and precipitation can have a notable effect on the projected snowfall fraction. The effect translated to considerable consequences for the glacio-hydrological responses and streamflow components of the catchments.
Several multivariate bias correction methods have been developed recently, but only a few...
Citation