Aggarwal, S. P., Thakur, P. K., Garg, V., Nikam, B. R., Chouksey, A., Dhote,
P., and Bhattacharya, T.: Water resources status and availability assessment
in current and future climate change scenarios for beas river basin of north
western himalaya. International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences (ISPRS), SLI-B8, 1389–1396,
https://doi.org/10.5194/isprs-archives-XLI-B8-1389-2016, 2016.
Akhtar, M., Ahmad, N., and Booij, M. J.: The impact of climate change on the
water resources of Hindukush-Karakorum-Himalaya region under different
glacier coverage scenarios, J. Hydrol., 355, 148–163, 2008.
Ali, D., Sacchetto, E., Dumontet, E., Le Carrer, D., Orsonneau, J. L.,
Delaroche, O., and Bigot-Corbel, E.: Hemolysis influence on twenty-two
biochemical parameters measurement, Ann. Biol. Clin.-Paris, 72, 297–311,
2014.
Ali, S., Dan, L., Fu, C. B., and Khan, F.: Twenty first century climatic and
hydrological changes over Upper Indus Basin of Himalayan region of Pakistan,
Environ. Res. Lett., 10, 014007, https://doi.org/10.1088/1748-9326/10/1/014007, 2015.
Anand, J., Devak, M., Gosain, A. K., Khosa, R., and Dhanya, C. T.: Spatial
Extent of Future Changes in the Hydrologic Cycle Components in Ganga Basin
using Ranked CORDEX RCMs, Hydrol. Earth Syst. Sci. Discuss.,
https://doi.org/10.5194/hess-2017-189, 2017.
Azam, M. F., Wagnon, P., Vincent, C., Ramanathan, A., Linda, A., and Singh,
V. B.: Reconstruction of the annual mass balance of Chhota Shigri glacier,
Western Himalaya, India, since 1969, Ann. Glaciol., 55, 69–80, 2014.
Azam, M. F., Ramanathan, A. L., Wagnon, P., Vincent, C., Linda, A., Berthier,
E., Sharma, P., Mandal, A., Angchuk, T., Singh, V. B., and Pottakkal, J. G.:
Meteorological conditions, seasonal and annual mass balances of Chhota Shigri
Glacier, western Himalaya, India, Ann. Glaciol., 57, 328–338, 2016.
Azam, M. F., Wagnon, P., Berthier, E., Vincent, C., Fujita, K., and Kargel,
J. S.: Review of the status and mass changes of Himalayan-Karakoram glaciers,
J. Glaciol., 64, 61–74, 2018.
Berthier, E., Arnaud, Y., Kumar, R., Ahmad, S., Wagnon, P., and Chevallier,
P.: Remote sensing estimates of glacier mass balances in the Himachal Pradesh
(Western Himalaya, India), Remote Sens. Environ., 108, 327–338, 2007.
Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J.
G., Frey, H., Kargel, J. S., Fujita, K., Scheel, M., Bajracharya, S., and
Stoffel, M.: The state and fate of Himalayan glaciers, Science, 336,
310–314, 2012.
Biskop, S., Krause, P., Helmschrot, J., Fink, M., and Flügel, W.-A.:
Assessment of data uncertainty and plausibility over the Nam Co Region,
Tibet, Adv. Geosci., 31, 57–65, https://doi.org/10.5194/adgeo-31-57-2012,
2012.
Brun, F., Berthier, E., Wagnon, P., Kääb, A., and Treichler, D.: A
spatially resolved estimate of High Mountain Asia glacier mass balances from
2000 to 2016, Nat. Geosci., 10, 668–673, 2017.
Chen, H., Xu, C. Y., and Guo, S.: Comparison and evaluation of multiple GCMs,
statistical downscaling and hydrological models in the study of climate
change impacts on runoff, J. Hydrol., 434, 36–45, 2012.
Chen, H., Guo, J., Xiong, W., Guo, S. L., and Xu, C. Y.: Downscaling GCMs
using the Smooth Support Vector Machine method to predict daily precipitation
in the Hanjiang Basin, Adv. Atmos. Sci., 27, 274–284, 2010.
Chen, J., Brissette, F. P., and Leconte, R.: Uncertainty of downscaling
method in quantifying the impact of climate change on hydrology, J. Hydrol.,
401, 190–202, 2011.
Chen, J., Brissette, F. P., Chaumont, D., and Braun, M.: Performance and
uncertainty evaluation of empirical downscaling methods in quantifying the
climate change impacts on hydrology over two North American river basins, J.
Hydrol., 479, 200–214, 2013.
Chu, J. T., Xia J., and Xu, C. Y.: Statistical downscaling of daily mean
temperature, pan evaporation and precipitation for climate change scenarios
in Haihe River, China, Theor. Appl. Climatol., 99, 149–161,
https://doi.org/10.1007/s00704-009-0129-6, 2010.
Collier, E., Mölg, T., Maussion, F., Scherer, D., Mayer, C., and Bush, A.
B. G.: High-resolution interactive modelling of the mountain
glacier–atmosphere interface: an application over the Karakoram, The
Cryosphere, 7, 779–795, https://doi.org/10.5194/tc-7-779-2013, 2013.
Dahri, Z. H., Ludwig, F., Moors, E., Ahmad, B., Khan, A., and Kabat, P.: An
appraisal of precipitation distribution in the high-altitude catchments of
the Indus basin, Sci. Total Environ., 548–549, 289–306,
https://doi.org/10.1016/j.scitotenv.2016.01.001, 2016.
Dimri, A. P., Yasunari, T., Wiltshire, A., Kumar, P., Mathison, C., Ridley,
J., and Jacob, D.: Application of regional climate models to the Indian
winter monsoon over the western Himalayas, Sci. Total Environ., 468–469,
S36–S47, https://doi.org/10.1016/j.scitotenv.2013.01.040, 2013.
Ehret, U., Zehe, E., Wulfmeyer, V., Warrach-Sagi, K., and Liebert, J.: HESS
Opinions “Should we apply bias correction to global and regional climate
model data?”, Hydrol. Earth Syst. Sci., 16, 3391–3404,
https://doi.org/10.5194/hess-16-3391-2012, 2012.
Engelhardt, M., Schuler, T. V., and Andreassen, L. M.: Evaluation of gridded
precipitation for Norway using glacier mass-balance measurements, Geogr. Ann.
A, 94, 501–509, https://doi.org/10.1111/j.1468-0459.2012.00473.x, 2012.
Engelhardt, M., Ramanathan, A. L., Eidhammer, T., Kumar, P., Landgren, O.,
Mandal, A., and Rasmussen, R.: Modelling 60 years of glacier mass balance and
runoff for Chhota Shigri Glacier, Western Himalaya, Northern India, J.
Glaciol., 63, 618–628, 2017.
Eden, J. M., Widmann, M., Maraun, D., and Vrac, M.: Comparison of GCM-and
RCM-simulated precipitation following stochastic postprocessing, J. Geophys.
Res.-Atmos., 119, 11–40, 2014.
Fang, G. H., Yang, J., Chen, Y. N., and Zammit, C.: Comparing bias correction
methods in downscaling meteorological variables for a hydrologic impact study
in an arid area in China, Hydrol. Earth Syst. Sci., 19, 2547–2559,
https://doi.org/10.5194/hess-19-2547-2015, 2015.
Fujihara, Y., Tanaka, K., Watanabe, T., Nagano, T., and Kojiri, T.: Assessing
the impacts of climate change on the water resources of the Seyhan River
Basin in Turkey: Use of dynamically downscaled data for hydrologic
simulations, J. Hydrol., 353, 33–48, 2008.
Gardelle, J., Berthier, E., Arnaud, Y., and Kääb, A.: Region-wide
glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011,
The Cryosphere, 7, 1263–1286, https://doi.org/10.5194/tc-7-1263-2013, 2013.
Gong, L., Widen-Nilsson, E., Halldin, S., and Xu, C. Y.: Large-scale runoff
routing with an aggregated network-response function, J. Hydrol., 368,
237–250, 2009.
Gong, L., Halldin, S., and Xu, C.-Y.: Global scale river routing – an
efficient time delay algorithm based on HydroSHEDS high resolution
hydrography, Hydrol. Process., 25, 1114–1128, 2011.
Hartmann, H. and Andresky, L.: Flooding in the Indus River basin – a
spatiotemporal analysis of precipitation records, Global Planet. Change, 107,
25–35, 2013.
Hasson, S.: Future Water Availability from Hindukush-Karakoram-Himalaya upper
Indus Basin under Conflicting Climate Change Scenarios, Climate, 4, 40,
https://doi.org/10.3390/cli4030040, 2016.
Hasson, S., Lucarini, V., Khan, M. R., Petitta, M., Bolch, T., and Gioli, G.:
Early 21st century snow cover state over the western river basins of the
Indus River system, Hydrol. Earth Syst. Sci., 18, 4077–4100,
https://doi.org/10.5194/hess-18-4077-2014, 2014.
Hessami, M., Gachon, P., Ouarda, T. B. M. J., and St-Hilaire, A.: Automated
regression-based statistical downscaling tool, Environ. Modell. Softw., 23,
813–834, https://doi.org/10.1016/j.envsoft.2007.10.004, 2008.
Hewitt, K.: The Karakoram anomaly? Glacier expansion and the “elevation
effect”, Karakoram Himalaya Mountain Research and Development, 25, 332–340,
2005.
Hock, R.: Temperature index modelling in mountain areas, J. Hydrol., 282,
104–115, 2003.
Horton, P., Schaefli, B., Mezghani, A., Hingray, B., and Musy, A.: Assessment
of climate-change impacts on alpine discharge regimes with climate model
uncertainty, Hydrol. Process., 20, 2091–2109, 2006.
Immerzeel, W., Pellicciotti, F., and Bierkens, M.: Rising river flows
throughout the twenty-first century in two Himalayan glacierized watersheds,
Nat. Geosci., 6, 742–745, https://doi.org/10.1038/NGEO1896, 2013.
Immerzeel, W. W., Wanders, N., Lutz, A. F., Shea, J. M., and Bierkens, M. F.
P.: Reconciling high-altitude precipitation in the upper Indus basin with
glacier mass balances and runoff, Hydrol. Earth Syst. Sci., 19, 4673–4687,
https://doi.org/10.5194/hess-19-4673-2015, 2015.
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer,
L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G., and
Georgopoulou, E.: EURO-CORDEX: new high-resolution climate change projections
for European impact research, Reg. Environ. Change, 14, 563–578, 2014.
Ji, Z. M. and Kang, S. C.: Projection of snow cover changes over China under
RCP scenarios, Clim. Dynam., 41, 589–600, 2013a.
Ji, Z. and Kang, S.: Double-nested dynamical downscaling experiments over the
Tibetan Plateau and their projection of climate change under two RCP
scenarios, J. Atmos. Sci., 70, 1278–1290, 2013b.
Johnson, F. and Sharma, A.: What are the impacts of bias correction on future
drought projections?, J. Hydrol., 525, 472–485, 2015.
Kattel, D. B., Yao, T., Yang, K., Tian, L., Yang, G., and Joswiak, D.:
Temperature lapse rate in complex mountain terrain on the southern slope of
the central Himalayas, Theor. Appl. Climatol., 113, 671–682, 2013.
Kääb, A., Treichler, D., Nuth, C., and Berthier, E.: Brief
Communication: Contending estimates of 2003–2008 glacier mass balance over
the Pamir–Karakoram–Himalaya, The Cryosphere, 9, 557–564,
https://doi.org/10.5194/tc-9-557-2015, 2015.
Khan, F., Pilz, J., Amjad, M., and Wiberg, D. A.: Climate variability and its
impacts on water resources in the Upper Indus Basin under IPCC climate change
scenarios, Int. J. Global Warm., 8, 46–69, 2015.
Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F., and Immerzeel, W.
W.: Impact of a 1.5 ∘C global temperature rise on Asia's glaciers,
Nature, 549, 257–260, 2017.
Kumar, V., Singh, P., and Singh, V.: Snow and glacier melt contribution in
the Beas River at Pandoh Dam, Himachal Pradesh, India, Hydrolog. Sci. J., 52,
376–388, 2007.
Li, H., Xu, C.-Y., Beldring, S., Tallaksen, T. M., and Jain, S. K.: Water
Resources under Climate Change in Himalayan basins, Water Resour. Manage.,
30, 843–859, https://doi.org/10.1007/s11269-015-1194-5, 2016.
Li, H., Beldring, S., Xu, C.-Y., Huss, M., and Melvold, K.: Integrating a
glacier retreat model into a hydrological model – case studies on three
glacierised catchments in Norway and Himalayan region, J. Hydrol., 527,
656–667, https://doi.org/10.1016/j.jhydrol.2015.05.017, 2015.
Li, L., Engelhard, M., Xu, C. Y., Jain, S. J., and Singh, V. P.: Comparison
of satellite-based and reanalysed precipitation as input to
glacio-hydrological modeling for Beas river basin, Northern India. Cold and
Mountain Region Hydrological Systems Under Climate Change: Towards Improved
Projections, IAHS-AISH P., 360, 45–52, 2013a.
Li, L., Ngongondo, C. S., Xu, C. Y., and Gong, L.: Comparison of the global
TRMM and WFD precipitation datasets in driving a large-scale hydrological
model in southern Africa, Hydrol. Res., 44, 770–788,
https://doi.org/10.2166/nh.2012.175, 2013b.
Li, L., Diallo, I., Xu, C.-Y., and Stordal, F.: Hydrological projections
under climate change in the near future by RegCM4 in Southern Africa using a
large-scale hydrological model, J. Hydrol., 528, 1–16,
https://doi.org/10.1016/j.jhydrol.2015.05.028, 2015.
Li, L., Gochis, D. J., Sobolowski, S., and Mesquita, M. D.: Evaluating the
present annual water budget of a Himalayan headwater river basin using a
high-resolution atmosphere-hydrology model, J. Geophys. Res.-Atmos., 122,
4786–4807, 2017.
Lutz, A. F., Immerzeel, W. W., Gobiet, A., Pellicciotti, F., and Bierkens, M.
F. P.: Comparison of climate change signals in CMIP3 and CMIP5 multi-model
ensembles and implications for Central Asian glaciers, Hydrol. Earth Syst.
Sci., 17, 3661–3677, https://doi.org/10.5194/hess-17-3661-2013, 2013.
Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., and Bierkens, M. F. P.:
Consistent increase in High Asia's runoff due to increasing glacier melt and
precipitation, Nat. Clim. Change, 4, p. 587, 2014.
Lutz, A. F., Immerzeel, W. W., Kraaijenbrink, P. D. A., Shrestha, A. B., and
Bierkens, M. F.: Climate change impacts on the upper Indus hydrology:
Sources, shifts and extremes, PloS one, 11, e0165630,
https://doi.org/10.1371/journal.pone.0165630, 2016.
Mair, E., Bertoldi, G., Leitinger, G., Della Chiesa, S., Niedrist, G., and
Tappeiner, U.: ESOLIP – estimate of solid and liquid precipitation at
sub-daily time resolution by combining snow height and rain gauge
measurements, Hydrol. Earth Syst. Sci. Discuss., 10, 8683–8714,
https://doi.org/10.5194/hessd-10-8683-2013, 2013.
Maussion, F., Scherer, D., Finkelnburg, R., Richters, J., Yang, W., and Yao,
T.: WRF simulation of a precipitation event over the Tibetan Plateau, China
– an assessment using remote sensing and ground observations, Hydrol. Earth
Syst. Sci., 15, 1795–1817, https://doi.org/10.5194/hess-15-1795-2011, 2011.
Ménégoz, M., Gallée, H., and Jacobi, H. W.: Precipitation and
snow cover in the Himalaya: from reanalysis to regional climate simulations,
Hydrol. Earth Syst. Sci., 17, 3921–3936,
https://doi.org/10.5194/hess-17-3921-2013, 2013.
Mishra, V.: Climatic uncertainty in Himalayan water towers, J. Geophys.
Res.-Atmos., 120, 2689–2705, 2015.
Mitchell, T. D. and Jones, P. D.: An improved method of constructing a
database of monthly climate observations and associated high-resolution
grids, Int. J. Climatol., 25, 693–712, 2005.
Mpelasoka, F. S. and Chiew, F. H. S.: Influence of rainfall scenario
construction methods on runoff projections, J. Hydrometeorol., 10,
1168–1183, 2009.
Palazzi, E., Von Hardenberg, J., and Provenzale, A.: Precipitation in the
Hindu-Kush Karakoram Himalaya: Observations and future scenarios, J. Geophys.
Res.-Atmos., 118, 85–100, 2013.
Pechlivanidis, I. G., Arheimer, B., Donnelly, C., Hundecha, Y., Huang, S.,
Aich, V., Samaniego, L., Eisner, S., and Shi, P.: Analysis of hydrological
extremes at different hydro-climatic regimes under present and future
conditions, Climatic Change, 141, 467–481, 2017.
Ragettli, S. and Pellicciotti, F.: Calibration of a physically based,
spatially distributed hydrological model in a glacierized basin: on the use
of knowledge from glaciometeorological processes to constrain model
parameters, Water Resour. Res., 48, 1–20, 2012.
Ramanathan, A. L.: Status Report on Chhota Shigri Glacier (Himachal Pradesh),
Department of Science and Technology, Ministry of Science and Technology, New
Delhi, Himalayan Glaciology Technical Report No.1, 88 pp., 2011.
Rasmussen, R., Liu, C., Ikeda, K., Gochis, D., Yates, D., Chen, F., Tewari,
M., Barlage, M., Dudhia, J., Yu, W., and Miller, K.: High-resolution coupled
climate runoff simulations of seasonal snowfall over Colorado: A process
study of current and warmer climate, J. Climate, 24, 3015–3048, 2011.
Rasmussen, R. M., Ikeda, K., Liu, C., Gochis, D. J., Clark, M., Dai, A.,
Gutmann, E., Dudhia, J., Chen, F., Barlage, M. J., Yates, D., and Zhang, G.:
Climate change impacts on the water balance of the Colorado headwaters:
High-resolution regional climate model simulations, J. Hydrometeorol., 15,
1091–1116, 2014.
RGI Consortium: Randolph Glacier Inventory – A Dataset of Global Glacier
Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from
Space, Digital Media, Colorado, USA, https://doi.org/10.7265/N5-RGI-60, 2017.
Rudd, A. C. and Kay, A. L.: Use of very high resolution climate model data
for hydrological modelling: estimation of potential evaporation, Hydrol.
Res., 47, 660–670, https://doi.org/10.2166/nh.2015.028, 2016.
Samaniego, L., Kumar, R., Breuer, L., Chamorro, A., Flörke, M.,
Pechlivanidis, I. G., Schäfer, D., Shah, H., Vetter, T., Wortmann, M.,
and Zeng, X.: Propagation of forcing and model uncertainties on to
hydrological drought characteristics in a multi-model century-long experiment
in large river basins, Climatic Change, 141, 435–449, 2017.
Scherler, D., Bookhagen, B., and Strecker, M. R.: Spatially variable response
of Himalayan glaciers to climate change affected by debris cover, Nat.
Geosci., 4, 156–159, 2011.
Schmidli, J., Frei, C., and Vidale, P. L.: Downscaling from GCM
precipitation: a benchmark for dynamical and statistical downscaling methods,
Int. J. Climatol., 26, 679–689, 2006.
Shen, M., Chen, J., Zhuan, M., Chen, H., Xu, C. Y., and Xiong, L.: Estimating
uncertainty and its temporal variation related to global climate models in
quantifying climate change impacts on hydrology, J. Hydrol., 556, 10–24,
2018.
Shrestha, M., Wang, L., Koike, T., Xue, Y., and Hirabayashi, Y.: Modeling the
spatial distribution of snow cover in the Dudhkoshi Region of the Nepal
Himalayas, J. Hydrometeorol., 13, 204–222, https://doi.org/10.1175/JHM-D-10-05027.1,
2012.
Singh, P., Kumar, N., and Arora, M.: Degree–day factors for snow and ice for
Dokriani Glacier, Garhwal Himalayas, J. Hydrol., 235, 1–11, 2000.
Singh, S., Ghosh, S., Sahana, A. S., Vittal, H., and Karmakar, S.: Do dynamic
regional models add value to the global model projections of Indian monsoon?,
Clim. Dynam., 48, 1375–1397, https://doi.org/10.1007/s00382-016-3147-y, 2017.
Smitha, P. S., Narasimhan, B., Sudheer, K. P., and Annamalai, H.: An improved
bias correction method of daily rainfall data using a sliding window
technique for climate change impact assessment, J. Hydrol., 556, 100–118,
2018.
Stahl, K., Moore, R. D., Shea, J. M., Hutchinson, D., and Cannon, A. J.:
Coupled modelling of glacier and streamflow response to future climate
scenarios, Water Resour. Res., 44, W02422, https://doi.org/10.1029/2007WR005956, 2008.
Tatsumi, K., Oizumi, T., and Yamashiki, Y.: Assessment of future
precipitation indices in the Shikoku region using a statistical downscaling
model, Stoch. Env. Res. Risk A, 28, 1447–1464,
https://doi.org/10.1007/s00477-014-0847-x, 2014.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and
the experiment design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Teutschbein, C. and Seibert, J.: Bias correction of regional climate model
simulations for hydrological climate-change impact studies: Review and
evaluation of different methods, J. Hydrol., 456, 12–29, 2012.
Troin, M., Velázquez, J. A., Caya, D., and Brissette, F.: Comparing
statistical post-processing of regional and global climate scenarios for
hydrological impacts assessment: A case study of two Canadian catchments, J.
Hydrol., 520, 268–288, 2015.
USGS (US Geological Survey): HYDRO 1K Elevation Derivative Database,
https://doi.org/10.5066/F77P8WN0, the Earth Resources Observation and Science (EROS)
Data Center (EDC), Sioux Falls, South Dakota, USA, 1996a.
USGS (US Geological Survey): GTOPO30 (Global 30 Arc-Second Elevation Data
Set), https://doi.org/10.5066/F7DF6PQS, the Earth Resources Observation and Science
(EROS) Data Center (EDC), Sioux Falls, South Dakota, USA, 1996b.
Vetter, T., Reinhardt, J., Flörke, M., van Griensven, A., Hattermann, F.,
Huang, S., Koch, H., Pechlivanidis, I. G., Plötner, S., Seidou, O., and
Su, B.: Evaluation of sources of uncertainty in projected hydrological
changes under climate change in 12 large-scale river basins, Climatic Change,
141, 419–433, 2017.
Vincent, C., Ramanathan, Al., Wagnon, P., Dobhal, D. P., Linda, A., Berthier,
E., Sharma, P., Arnaud, Y., Azam, M. F., Jose, P. G., and Gardelle, J.:
Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti
region (northern India, Himalaya) during the nineties preceded recent mass
loss, The Cryosphere, 7, 569–582, https://doi.org/10.5194/tc-7-569-2013,
2013.
Viste, E. and Sorteberg, A.: Snowfall in the Himalayas: an uncertain future
from a little-known past, The Cryosphere, 9, 1147–1167,
https://doi.org/10.5194/tc-9-1147-2015, 2015.
Wagnon, P., Linda, A., Arnaud, Y., Kumar, R., Sharma, P., Vincent, C.,
Pottakkal, J. G., Berthier, E., Ramanathan, A., Hasnain, S. I., and
Chevallier, P.: Four years of mass balance on Chhota Shigri Glacier, Himachal
Pradesh, India, a new benchmark glacier in the western Himalaya, J. Glaciol.,
53, 603–611, 2007.
Widen-Nillsson, E., Gong, L., Halldin, S., and Xu, C. Y.: Model performance
and parameter behavior for varying time aggregations and evaluation criteria
in the WASMOD-M global water balance model, Water Resour. Res., 45, W05418,
https://doi.org/10.1029/2007WR006695, 2009.
Wilby, R. L., Dawson, C. W., and Barrow, E. M.: DBC – a decision support
tool for the assessment of regional climate change impacts, Environ. Modell.
Softw., 17, 145–157, 2002.
Winiger, M. G. H. Y., Gumpert, M., and Yamout, H.:
Karakorum–Hindukush–western Himalaya: assessing high-altitude water
resources, Hydrol. Process., 19, 2329–2338, 2005.
Xu, C.-Y.: WASMOD – The Water And Snow balance MODelling system, in:
Mathematical Models of Small Watershed Hydrology and Applications, edited by:
Singh, V. P. and Frevert, D. K., LLC, Chelsea, Michigan, USA, Water Resources
Publications, 2002.